A Monotonicity Calculus and Its Completeness

Thomas F. Icard, L. Moss, William Tune
{"title":"A Monotonicity Calculus and Its Completeness","authors":"Thomas F. Icard, L. Moss, William Tune","doi":"10.18653/v1/W17-3408","DOIUrl":null,"url":null,"abstract":"One of the prominent mathematical features of natural language is the prevalence of “upward” and “downward” inferences involving determiners and other functional expressions. These inferences are associated with negative and positive polarity positions in syntax, and they also feature in computer implementations of textual entailment. Formal treatments of these phenomena began in the 1980’s and have been refined and expanded in the last 10 years. This paper takes a large step in the area by extending typed lambda calculus to the ordered setting . Not only does this provide a formal tool for reasoning about upward and downward inferences in natu-ral language, it also applies to the analysis of monotonicity arguments in mathematics more generally.","PeriodicalId":133680,"journal":{"name":"Mathematics of Language","volume":"284 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-3408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

One of the prominent mathematical features of natural language is the prevalence of “upward” and “downward” inferences involving determiners and other functional expressions. These inferences are associated with negative and positive polarity positions in syntax, and they also feature in computer implementations of textual entailment. Formal treatments of these phenomena began in the 1980’s and have been refined and expanded in the last 10 years. This paper takes a large step in the area by extending typed lambda calculus to the ordered setting . Not only does this provide a formal tool for reasoning about upward and downward inferences in natu-ral language, it also applies to the analysis of monotonicity arguments in mathematics more generally.
单调性微积分及其完备性
自然语言的一个突出的数学特征是“向上”和“向下”推理的流行,涉及限定词和其他功能表达式。这些推理与语法中的否定极性和肯定极性位置有关,它们也以文本蕴涵的计算机实现为特征。对这些现象的正式处理始于20世纪80年代,并在过去10年中得到了改进和扩展。本文通过将类型化λ演算扩展到有序集,在该领域迈出了一大步。这不仅为在自然语言中进行向上和向下推理提供了形式化的工具,而且还更普遍地适用于数学中单调性参数的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信