N. Pitsianis, A. Iliopoulos, D. Floros, Xiaobai Sun
{"title":"Spaceland Embedding of Sparse Stochastic Graphs","authors":"N. Pitsianis, A. Iliopoulos, D. Floros, Xiaobai Sun","doi":"10.1109/HPEC.2019.8916505","DOIUrl":null,"url":null,"abstract":"We introduce SG-t-SNE, a nonlinear method for embedding stochastic graphs/networks into d-dimensional spaces, d = 1, 2, 3, without requiring vertex features to reside in, or be transformed into, a metric space. Graphs/networks are relational data, prevalent in real-world applications. Graph embedding is fundamental to many graph analysis tasks, besides graph visualization. SG-t-SNE follows and builds upon the core principle of t-SNE, which is a widely used method for visualizing high-dimensional data. We also introduce SG-t-SNE-Π, a high-performance software for rapid d-dimensional embedding of large, sparse, stochastic graphs on personal computers with superior efficiency. It empowers SG-t-SNE with modern computing techniques exploiting matrix structures in tandem with memory architectures. We present elucidating graph embedding results with several synthetic graphs and real-world networks in this paper and its Supplementary Material.11Supplementary Material is at http://t-sne-pi.cs.duke.edu.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We introduce SG-t-SNE, a nonlinear method for embedding stochastic graphs/networks into d-dimensional spaces, d = 1, 2, 3, without requiring vertex features to reside in, or be transformed into, a metric space. Graphs/networks are relational data, prevalent in real-world applications. Graph embedding is fundamental to many graph analysis tasks, besides graph visualization. SG-t-SNE follows and builds upon the core principle of t-SNE, which is a widely used method for visualizing high-dimensional data. We also introduce SG-t-SNE-Π, a high-performance software for rapid d-dimensional embedding of large, sparse, stochastic graphs on personal computers with superior efficiency. It empowers SG-t-SNE with modern computing techniques exploiting matrix structures in tandem with memory architectures. We present elucidating graph embedding results with several synthetic graphs and real-world networks in this paper and its Supplementary Material.11Supplementary Material is at http://t-sne-pi.cs.duke.edu.