Temporal video segmentation using a switched affine models identification technique

K. Boukharouba, L. Bako, S. Lecoeuche
{"title":"Temporal video segmentation using a switched affine models identification technique","authors":"K. Boukharouba, L. Bako, S. Lecoeuche","doi":"10.1109/IPTA.2010.5586767","DOIUrl":null,"url":null,"abstract":"The analysis of digital video content is of fundamental importance for efficient browsing, indexing and retrieval of video database in order to facilitate user's access to relevant data. An essential first step is the parsing of the video content into visually-coherent segments, called shots. In this paper we propose an efficient approach for shot change detection and shot modeling based on a new Switched AutoRegressive (SAR) model identification technique. We make the assumption that pixel intensities of all the frames obey a SAR model where each linear sub-model of the SAR model corresponds to a shot and each discrete state corresponds to a different event in the video. Finally, experimental results on three different video sequences show the performance and the feasibility of the proposed approach.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The analysis of digital video content is of fundamental importance for efficient browsing, indexing and retrieval of video database in order to facilitate user's access to relevant data. An essential first step is the parsing of the video content into visually-coherent segments, called shots. In this paper we propose an efficient approach for shot change detection and shot modeling based on a new Switched AutoRegressive (SAR) model identification technique. We make the assumption that pixel intensities of all the frames obey a SAR model where each linear sub-model of the SAR model corresponds to a shot and each discrete state corresponds to a different event in the video. Finally, experimental results on three different video sequences show the performance and the feasibility of the proposed approach.
使用切换仿射模型识别技术的时域视频分割
数字视频内容分析是视频数据库高效浏览、索引和检索的基础,方便用户获取相关数据。重要的第一步是将视频内容解析成视觉上连贯的片段,称为镜头。本文提出了一种基于切换自回归(SAR)模型识别技术的镜头变化检测和镜头建模方法。我们假设所有帧的像素强度服从SAR模型,其中SAR模型的每个线性子模型对应于一个镜头,每个离散状态对应于视频中的不同事件。最后,在三个不同的视频序列上进行了实验,验证了该方法的性能和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信