Acoustic emotion recognition: A benchmark comparison of performances

Björn Schuller, Bogdan Vlasenko, F. Eyben, G. Rigoll, A. Wendemuth
{"title":"Acoustic emotion recognition: A benchmark comparison of performances","authors":"Björn Schuller, Bogdan Vlasenko, F. Eyben, G. Rigoll, A. Wendemuth","doi":"10.1109/ASRU.2009.5372886","DOIUrl":null,"url":null,"abstract":"In the light of the first challenge on emotion recognition from speech we provide the largest-to-date benchmark comparison under equal conditions on nine standard corpora in the field using the two pre-dominant paradigms: modeling on a frame-level by means of hidden Markov models and supra-segmental modeling by systematic feature brute-forcing. Investigated corpora are the ABC, AVIC, DES, EMO-DB, eNTERFACE, SAL, SmartKom, SUSAS, and VAM databases. To provide better comparability among sets, we additionally cluster each database's emotions into binary valence and arousal discrimination tasks. In the result large differences are found among corpora that mostly stem from naturalistic emotions and spontaneous speech vs. more prototypical events. Further, supra-segmental modeling proves significantly beneficial on average when several classes are addressed at a time.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"268","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5372886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 268

Abstract

In the light of the first challenge on emotion recognition from speech we provide the largest-to-date benchmark comparison under equal conditions on nine standard corpora in the field using the two pre-dominant paradigms: modeling on a frame-level by means of hidden Markov models and supra-segmental modeling by systematic feature brute-forcing. Investigated corpora are the ABC, AVIC, DES, EMO-DB, eNTERFACE, SAL, SmartKom, SUSAS, and VAM databases. To provide better comparability among sets, we additionally cluster each database's emotions into binary valence and arousal discrimination tasks. In the result large differences are found among corpora that mostly stem from naturalistic emotions and spontaneous speech vs. more prototypical events. Further, supra-segmental modeling proves significantly beneficial on average when several classes are addressed at a time.
声学情感识别:性能的基准比较
鉴于语音情感识别的第一个挑战,我们使用两种占主导地位的范式,在相同条件下对该领域的九个标准语料库进行了迄今为止最大的基准比较:基于隐马尔可夫模型的帧级建模和基于系统特征暴力强迫的超分段建模。调查的语料库有ABC、AVIC、DES、EMO-DB、eNTERFACE、SAL、SmartKom、SUSAS和VAM数据库。为了更好地提供集合之间的可比性,我们还将每个数据库的情绪聚类为二值价和唤醒辨别任务。结果发现,主要源于自然情绪和自发言语的语料库与更典型的事件的语料库之间存在巨大差异。此外,当一次处理几个类时,超分段建模被证明是非常有益的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信