Label transfer for joint recognition and segmentation of 3D object

Yong-Hui Xu, Ronghua Luo, Huaqing Min
{"title":"Label transfer for joint recognition and segmentation of 3D object","authors":"Yong-Hui Xu, Ronghua Luo, Huaqing Min","doi":"10.1109/ICMLC.2012.6359524","DOIUrl":null,"url":null,"abstract":"With the information from labeled RGB image an unsupervised method based on label transfer technology is proposed for 3D object recognition and segmentation in RGB-D images. We first use scale invariant features extracted from color space to retrieve a set of nearest neighbors of the input image from the labeled image database. Based on the projection matrix between the labeled image and the input image, the labels of the pixels in the labeled image are transferred to input image. And then a segmentation model and a clustering algorithm based on the geometric characteristics are designed to obtain the spatial and semantic consistent object regions in the RGB-D images. Compared to supervised object recognition, our method does not need to train a classifier using a lot of training images.","PeriodicalId":128006,"journal":{"name":"2012 International Conference on Machine Learning and Cybernetics","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2012.6359524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

With the information from labeled RGB image an unsupervised method based on label transfer technology is proposed for 3D object recognition and segmentation in RGB-D images. We first use scale invariant features extracted from color space to retrieve a set of nearest neighbors of the input image from the labeled image database. Based on the projection matrix between the labeled image and the input image, the labels of the pixels in the labeled image are transferred to input image. And then a segmentation model and a clustering algorithm based on the geometric characteristics are designed to obtain the spatial and semantic consistent object regions in the RGB-D images. Compared to supervised object recognition, our method does not need to train a classifier using a lot of training images.
三维物体联合识别与分割的标签转移
利用标记RGB图像的信息,提出了一种基于标签转移技术的无监督RGB- d图像三维目标识别与分割方法。我们首先使用从颜色空间中提取的尺度不变特征从标记图像数据库中检索输入图像的一组最近邻。基于标记图像与输入图像之间的投影矩阵,将标记图像中像素的标记转移到输入图像中。然后设计了基于几何特征的分割模型和聚类算法,以获得RGB-D图像中空间和语义一致的目标区域。与有监督对象识别相比,我们的方法不需要使用大量的训练图像来训练分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信