Feature-Level Fusion using Convolutional Neural Network for Multi-Language Synthetic Character Recognition in Natual Images

Asghar Ali, M. Pickering
{"title":"Feature-Level Fusion using Convolutional Neural Network for Multi-Language Synthetic Character Recognition in Natual Images","authors":"Asghar Ali, M. Pickering","doi":"10.1109/DICTA.2018.8615845","DOIUrl":null,"url":null,"abstract":"In this paper, a new Convolutional Neural Network (CNN) architecture is proposed for synthetic Urdu and English character recognition in natural scene images. The features are extracted using three separate sub-models of the CNN which are then fused in one feature vector. The network is purely trained on the synthetic character images of English and Urdu texts in natural images. For English text, the Chars74k-Font dataset is used and for Urdu text, the synthetic dataset is created by automatically cropping the image patches from four background image datasets and then putting characters at random positions within the image patch. The network is evaluated on a combined synthetic dataset of English and Urdu characters and the separate synthetic characters of Urdu and English datasets. The experimental results show that the network performs well on synthetic datasets.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, a new Convolutional Neural Network (CNN) architecture is proposed for synthetic Urdu and English character recognition in natural scene images. The features are extracted using three separate sub-models of the CNN which are then fused in one feature vector. The network is purely trained on the synthetic character images of English and Urdu texts in natural images. For English text, the Chars74k-Font dataset is used and for Urdu text, the synthetic dataset is created by automatically cropping the image patches from four background image datasets and then putting characters at random positions within the image patch. The network is evaluated on a combined synthetic dataset of English and Urdu characters and the separate synthetic characters of Urdu and English datasets. The experimental results show that the network performs well on synthetic datasets.
基于卷积神经网络的特征级融合自然图像多语言合成字符识别
本文提出了一种新的卷积神经网络(CNN)结构,用于自然场景图像中乌尔都语和英语字符的综合识别。使用三个独立的CNN子模型提取特征,然后将其融合到一个特征向量中。该网络纯粹是在自然图像中的英语和乌尔都语文本的合成字符图像上进行训练的。对于英语文本,使用Chars74k-Font数据集,对于乌尔都语文本,通过自动裁剪四个背景图像数据集的图像补丁,然后在图像补丁内随机放置字符来创建合成数据集。在英语和乌尔都语字符的组合合成数据集以及乌尔都语和英语的单独合成数据集上对网络进行了评估。实验结果表明,该网络在合成数据集上表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信