{"title":"High Gain, Widebandwidth and Low PowerTransimpedance Amplifier Using DTMOS Transistor","authors":"Jawdat Y. Abu-Taha","doi":"10.1109/PICECE.2019.8747178","DOIUrl":null,"url":null,"abstract":"This research paper details the DTMOS transistor method to enhance the bandwidth of the transimpedance amplifier. The proposed TIA is based on boosting the trans conductance of a MOS transistor using a composite transistor configuration with a higher significance of transconductance than the regular DTMOS. This methodology is anchored by a design in a $0.18\\mu \\mathrm{m}$ CMOS innovation. The photodiode has a capacitance of 200fF, which permits the TIA to achieve a wide bandwidth of 2.6GHz. It is seen that the proposed TIA provides transimpedance gain of 56. 5 $\\mathrm{d}\\mathrm{B}\\Omega$ and input inferred noise-Current Spectral Density of $8\\mathrm{p}\\mathrm{A}/\\sqrt{\\mathrm{H}\\mathrm{z}}$ and the mean group-delay fluctuation is 4ps through the 3-dB bandwidth. The power consumption is recorded at 1.1mW from a 1.8V supply.","PeriodicalId":375980,"journal":{"name":"2019 IEEE 7th Palestinian International Conference on Electrical and Computer Engineering (PICECE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 7th Palestinian International Conference on Electrical and Computer Engineering (PICECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICECE.2019.8747178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This research paper details the DTMOS transistor method to enhance the bandwidth of the transimpedance amplifier. The proposed TIA is based on boosting the trans conductance of a MOS transistor using a composite transistor configuration with a higher significance of transconductance than the regular DTMOS. This methodology is anchored by a design in a $0.18\mu \mathrm{m}$ CMOS innovation. The photodiode has a capacitance of 200fF, which permits the TIA to achieve a wide bandwidth of 2.6GHz. It is seen that the proposed TIA provides transimpedance gain of 56. 5 $\mathrm{d}\mathrm{B}\Omega$ and input inferred noise-Current Spectral Density of $8\mathrm{p}\mathrm{A}/\sqrt{\mathrm{H}\mathrm{z}}$ and the mean group-delay fluctuation is 4ps through the 3-dB bandwidth. The power consumption is recorded at 1.1mW from a 1.8V supply.