Research for construction and application of PCA-SVM for exchange rate forecasting

Zhang Cheng-zhao
{"title":"Research for construction and application of PCA-SVM for exchange rate forecasting","authors":"Zhang Cheng-zhao","doi":"10.1145/3277139.3277173","DOIUrl":null,"url":null,"abstract":"The traditional SVM method has the problem of kernel function's parameters and dynamic optimization of penalty coefficient C. This paper constructs a hybrid model by extending the SVM method with PCA method to solve the problem. Finally we use the daily date of the exchange rate to test the high prediction accuracy of PCA-SVM model. In order to achieve better prediction accuracy, four kernel functions are used to construct different SVM. The empirical results show that SVR based on RBF kernel has the highest prediction accuracy. This result illustrates that the relevant government can take use of the model to monitor the smooth fluctuations in the exchange rate market.","PeriodicalId":272703,"journal":{"name":"Proceedings of the 1st International Conference on Information Management and Management Science","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Conference on Information Management and Management Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3277139.3277173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The traditional SVM method has the problem of kernel function's parameters and dynamic optimization of penalty coefficient C. This paper constructs a hybrid model by extending the SVM method with PCA method to solve the problem. Finally we use the daily date of the exchange rate to test the high prediction accuracy of PCA-SVM model. In order to achieve better prediction accuracy, four kernel functions are used to construct different SVM. The empirical results show that SVR based on RBF kernel has the highest prediction accuracy. This result illustrates that the relevant government can take use of the model to monitor the smooth fluctuations in the exchange rate market.
汇率预测中PCA-SVM的构建与应用研究
传统的支持向量机方法存在核函数参数和罚系数c动态优化的问题,本文通过将支持向量机方法与主成分分析方法进行扩展,构建混合模型来解决该问题。最后利用汇率日数据验证了PCA-SVM模型较高的预测精度。为了达到更好的预测精度,采用4个核函数构造不同的支持向量机。实证结果表明,基于RBF核的支持向量回归具有最高的预测精度。这一结果说明,相关政府可以利用该模型来监测汇率市场的平稳波动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信