V. Kobelev, G. A. Nechkin, G. Isaenko, V. Kirsanov
{"title":"Influence of particles size distribution on the carbon content throughout sinter bed height","authors":"V. Kobelev, G. A. Nechkin, G. Isaenko, V. Kirsanov","doi":"10.32339/0135-5910-2021-11-1136-1141","DOIUrl":null,"url":null,"abstract":"By the previous studies it was established that the character of solid fuel distribution throughout the bed height considerably effects the sintering machines productivity and the sinter quality. The purpose of the study was assessment of solid fuel distribution in the agglomerated burden throughout the height of bed at sintering machine. Sinter mix samples were taken from three sections of the bed: 150 mm - top part, 150 mm - middle part and 170 mm - bottom part at the sintering machines of NLMK. After screening the samples, particle size distribution was determined, as well as carbon content throughout the bed height and in the particles of different sizes. It was found that all solid fuel, irrespective of the size, gets balled into sinter mix granules, fine fuel (fraction -0.63 mm) was almost evenly distributed over the granules of different sizes, while coarse fuel (+3 mm) is mainly picked up by large granules. Solid fuel of -3 mm +0.63 mm fraction is mostly balled into 3-5 mm granules. Such nature of solid fuel distribution in the granules of the pelletized mix results in suboptimal distribution of fuel throughout the bed height at sintering machines No. 1, 2, despite satisfactory size segregation of the mix: it changes from low content in the top part to a higher content at the bottom of the bed. At sintering machines No. 3, 4 where there was no size segregation of the mix, fuel distribution throughout the bed height changes from optimal to non-optimal (low content in the top part). To optimize solid fuel distribution throughout the bed height with both good and poor segregation of the mix, it is necessary to reduce the content of 0-0.5 mm particles fraction in coke breeze.","PeriodicalId":259995,"journal":{"name":"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32339/0135-5910-2021-11-1136-1141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
By the previous studies it was established that the character of solid fuel distribution throughout the bed height considerably effects the sintering machines productivity and the sinter quality. The purpose of the study was assessment of solid fuel distribution in the agglomerated burden throughout the height of bed at sintering machine. Sinter mix samples were taken from three sections of the bed: 150 mm - top part, 150 mm - middle part and 170 mm - bottom part at the sintering machines of NLMK. After screening the samples, particle size distribution was determined, as well as carbon content throughout the bed height and in the particles of different sizes. It was found that all solid fuel, irrespective of the size, gets balled into sinter mix granules, fine fuel (fraction -0.63 mm) was almost evenly distributed over the granules of different sizes, while coarse fuel (+3 mm) is mainly picked up by large granules. Solid fuel of -3 mm +0.63 mm fraction is mostly balled into 3-5 mm granules. Such nature of solid fuel distribution in the granules of the pelletized mix results in suboptimal distribution of fuel throughout the bed height at sintering machines No. 1, 2, despite satisfactory size segregation of the mix: it changes from low content in the top part to a higher content at the bottom of the bed. At sintering machines No. 3, 4 where there was no size segregation of the mix, fuel distribution throughout the bed height changes from optimal to non-optimal (low content in the top part). To optimize solid fuel distribution throughout the bed height with both good and poor segregation of the mix, it is necessary to reduce the content of 0-0.5 mm particles fraction in coke breeze.