Efficiently exploring architectural design spaces via predictive modeling

ASPLOS XII Pub Date : 2006-10-23 DOI:10.1145/1168857.1168882
Engin Ipek, S. Mckee, R. Caruana, B. Supinski, M. Schulz
{"title":"Efficiently exploring architectural design spaces via predictive modeling","authors":"Engin Ipek, S. Mckee, R. Caruana, B. Supinski, M. Schulz","doi":"10.1145/1168857.1168882","DOIUrl":null,"url":null,"abstract":"Architects use cycle-by-cycle simulation to evaluate design choices and understand tradeoffs and interactions among design parameters. Efficiently exploring exponential-size design spaces with many interacting parameters remains an open problem: the sheer number of experiments renders detailed simulation intractable. We attack this problem via an automated approach that builds accurate, confident predictive design-space models. We simulate sampled points, using the results to teach our models the function describing relationships among design parameters. The models produce highly accurate performance estimates for other points in the space, can be queried to predict performance impacts of architectural changes, and are very fast compared to simulation, enabling efficient discovery of tradeoffs among parameters in different regions. We validate our approach via sensitivity studies on memory hierarchy and CPU design spaces: our models generally predict IPC with only 1-2% error and reduce required simulation by two orders of magnitude. We also show the efficacy of our technique for exploring chip multiprocessor (CMP) design spaces: when trained on a 1% sample drawn from a CMP design space with 250K points and up to 55x performance swings among different system configurations, our models predict performance with only 4-5% error on average. Our approach combines with techniques to reduce time per simulation, achieving net time savings of three-four orders of magnitude.","PeriodicalId":270694,"journal":{"name":"ASPLOS XII","volume":"22 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"364","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASPLOS XII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1168857.1168882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 364

Abstract

Architects use cycle-by-cycle simulation to evaluate design choices and understand tradeoffs and interactions among design parameters. Efficiently exploring exponential-size design spaces with many interacting parameters remains an open problem: the sheer number of experiments renders detailed simulation intractable. We attack this problem via an automated approach that builds accurate, confident predictive design-space models. We simulate sampled points, using the results to teach our models the function describing relationships among design parameters. The models produce highly accurate performance estimates for other points in the space, can be queried to predict performance impacts of architectural changes, and are very fast compared to simulation, enabling efficient discovery of tradeoffs among parameters in different regions. We validate our approach via sensitivity studies on memory hierarchy and CPU design spaces: our models generally predict IPC with only 1-2% error and reduce required simulation by two orders of magnitude. We also show the efficacy of our technique for exploring chip multiprocessor (CMP) design spaces: when trained on a 1% sample drawn from a CMP design space with 250K points and up to 55x performance swings among different system configurations, our models predict performance with only 4-5% error on average. Our approach combines with techniques to reduce time per simulation, achieving net time savings of three-four orders of magnitude.
通过预测建模有效地探索建筑设计空间
架构师使用循环模拟来评估设计选择,并理解设计参数之间的权衡和相互作用。有效地探索具有许多相互作用参数的指数级设计空间仍然是一个悬而未决的问题:大量的实验使得详细的模拟变得难以处理。我们通过构建准确、自信的预测设计空间模型的自动化方法来解决这个问题。我们对采样点进行模拟,利用结果教会我们的模型描述设计参数之间关系的函数。该模型对空间中的其他点产生高度准确的性能估计,可以查询以预测架构更改对性能的影响,并且与模拟相比非常快,能够有效地发现不同区域中参数之间的权衡。我们通过对内存层次结构和CPU设计空间的敏感性研究验证了我们的方法:我们的模型通常预测IPC只有1-2%的误差,并将所需的模拟减少了两个数量级。我们还展示了我们的技术在探索芯片多处理器(CMP)设计空间方面的有效性:当从具有250K个点的CMP设计空间中抽取1%的样本进行训练时,在不同系统配置之间的性能波动高达55倍,我们的模型预测性能的平均误差只有4-5%。我们的方法结合了减少每次模拟时间的技术,实现了三到四个数量级的净时间节省。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信