Tagging large-radius $b$-jets from Higgs decays dropping unneeded information

A. Di Luca, D. Mascione, F. M. Follega, M. Cristoforetti, R. Iuppa
{"title":"Tagging large-radius $b$-jets from Higgs decays dropping unneeded information","authors":"A. Di Luca, D. Mascione, F. M. Follega, M. Cristoforetti, R. Iuppa","doi":"10.22323/1.380.0399","DOIUrl":null,"url":null,"abstract":"Multivariate approaches used in physics analyses by the High Energy Physics community often combine high-level observables estimated by very complex algorithms. The process to select these variables is usually based on a “brute force” approach, where all available event features are tested for multiple combinations of the algorithm hyperparameters. In this work, we propose an original method based on the use of a CancelOut layer to select to give as input to a Fully Connected Neural Network. Promising results are obtained in the development of a DNN classifier to select proton-proton collisions where a boosted Higgs boson decay to two 1-quarks.","PeriodicalId":135659,"journal":{"name":"Proceedings of Particles and Nuclei International Conference 2021 — PoS(PANIC2021)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Particles and Nuclei International Conference 2021 — PoS(PANIC2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.380.0399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multivariate approaches used in physics analyses by the High Energy Physics community often combine high-level observables estimated by very complex algorithms. The process to select these variables is usually based on a “brute force” approach, where all available event features are tested for multiple combinations of the algorithm hyperparameters. In this work, we propose an original method based on the use of a CancelOut layer to select to give as input to a Fully Connected Neural Network. Promising results are obtained in the development of a DNN classifier to select proton-proton collisions where a boosted Higgs boson decay to two 1-quarks.
标记来自希格斯衰变的大半径b粒子,从而丢弃不需要的信息
高能物理界在物理分析中使用的多变量方法通常结合由非常复杂的算法估计的高水平可观测值。选择这些变量的过程通常基于“蛮力”方法,其中所有可用的事件特征都经过算法超参数的多种组合测试。在这项工作中,我们提出了一种基于使用CancelOut层来选择将其作为全连接神经网络的输入的原始方法。在一个DNN分类器的发展中获得了有希望的结果,以选择质子-质子碰撞,其中一个被增强的希格斯玻色子衰变为两个1夸克。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信