Sub-word modeling of out of vocabulary words in spoken term detection

Igor Szöke, L. Burget, J. Černocký, M. Fapšo
{"title":"Sub-word modeling of out of vocabulary words in spoken term detection","authors":"Igor Szöke, L. Burget, J. Černocký, M. Fapšo","doi":"10.1109/SLT.2008.4777893","DOIUrl":null,"url":null,"abstract":"This paper deals with comparison of sub-word based methods for spoken term detection (STD) task and phone recognition. The sub-word units are needed for search for out-of-vocabulary words. We compared words, phones and multigrams. The maximal length and pruning of multigrams were investigated first. Then two constrained methods of multigram training were proposed. We evaluated on the NIST STD06 dev-set CTS data. The conclusion is that the proposed method improves the phone accuracy more than 9% relative and STD accuracy more than 7% relative.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

Abstract

This paper deals with comparison of sub-word based methods for spoken term detection (STD) task and phone recognition. The sub-word units are needed for search for out-of-vocabulary words. We compared words, phones and multigrams. The maximal length and pruning of multigrams were investigated first. Then two constrained methods of multigram training were proposed. We evaluated on the NIST STD06 dev-set CTS data. The conclusion is that the proposed method improves the phone accuracy more than 9% relative and STD accuracy more than 7% relative.
口语词汇检测中非词汇的子词建模
本文对基于子词的语音词检测方法和基于子词的语音词识别方法进行了比较。子词单位用于搜索超出词汇表的单词。我们比较了单词、电话和复合图。首先研究了复合图的最大长度和剪枝问题。然后提出了两种约束的多图训练方法。我们在NIST STD06开发集CTS数据上进行了评估。结果表明,该方法可使电话精度相对提高9%以上,STD精度相对提高7%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信