Applied Partitioned Ordinary Kriging for Online Updates for Autonomous Vehicles

Pavlo Vlastos, A. Hunter, R. Curry, Carlos Isaac Espinosa Ramirez, G. Elkaim
{"title":"Applied Partitioned Ordinary Kriging for Online Updates for Autonomous Vehicles","authors":"Pavlo Vlastos, A. Hunter, R. Curry, Carlos Isaac Espinosa Ramirez, G. Elkaim","doi":"10.1109/syscon53536.2022.9773853","DOIUrl":null,"url":null,"abstract":"Autonomous vehicles for exploration purposes are often limited by energy and computation capacity. Usually they are tasked with the goal of efficiently and optimally exploring a given region of space. Tasks involving path planning and spatial estimation can require computation time with exponential growth versus the number of measurements taken. This creates a problem if the number of measurements is large. This paper outlines an experiment to compare a spatial estimation method, ordinary kriging with a proposed method, partitioned ordinary kriging (POK) using real environmental data measured by a remote-operated autonomous surface vehicle (ASV). The ASV collected depth measurements of a small body of water, mapped to its GPS location while under remote-control. The mean absolute error (MAE) and computation time were compared as the number of measurements increased. The POK method demonstrated favorable error and computation time compared to ordinary kriging.","PeriodicalId":437743,"journal":{"name":"2022 IEEE International Systems Conference (SysCon)","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Systems Conference (SysCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/syscon53536.2022.9773853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Autonomous vehicles for exploration purposes are often limited by energy and computation capacity. Usually they are tasked with the goal of efficiently and optimally exploring a given region of space. Tasks involving path planning and spatial estimation can require computation time with exponential growth versus the number of measurements taken. This creates a problem if the number of measurements is large. This paper outlines an experiment to compare a spatial estimation method, ordinary kriging with a proposed method, partitioned ordinary kriging (POK) using real environmental data measured by a remote-operated autonomous surface vehicle (ASV). The ASV collected depth measurements of a small body of water, mapped to its GPS location while under remote-control. The mean absolute error (MAE) and computation time were compared as the number of measurements increased. The POK method demonstrated favorable error and computation time compared to ordinary kriging.
自动驾驶汽车在线更新的分区普通克里格应用
用于探测目的的自动驾驶汽车通常受到能量和计算能力的限制。通常,他们的任务是有效和最佳地探索给定的空间区域。涉及路径规划和空间估计的任务可能需要计算时间,与所采取的测量数量呈指数增长。如果测量的数量很大,这就会产生问题。本文概述了一项实验,比较了一种空间估计方法,普通克里格和一种基于远程操作自主地面车辆(ASV)测量的真实环境数据的分割普通克里格(POK)方法。ASV收集了一小块水域的深度测量数据,并在远程控制下将其定位到GPS位置。随着测量次数的增加,比较了平均绝对误差(MAE)和计算时间。与普通克里格法相比,POK法具有良好的误差和计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信