{"title":"Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting","authors":"F. Blanqui, G. Genestier, O. Hermant","doi":"10.4230/LIPIcs.FSCD.2019.9","DOIUrl":null,"url":null,"abstract":"Dependency pairs are a key concept at the core of modern automated termination provers for first-order term rewriting systems. In this paper, we introduce an extension of this technique for a large class of dependently-typed higher-order rewriting systems. This extends previous resultsby Wahlstedt on the one hand and the first author on the other hand to strong normalization and non-orthogonal rewriting systems. This new criterion is implemented in the type-checker Dedukti.","PeriodicalId":284975,"journal":{"name":"International Conference on Formal Structures for Computation and Deduction","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Formal Structures for Computation and Deduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSCD.2019.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Dependency pairs are a key concept at the core of modern automated termination provers for first-order term rewriting systems. In this paper, we introduce an extension of this technique for a large class of dependently-typed higher-order rewriting systems. This extends previous resultsby Wahlstedt on the one hand and the first author on the other hand to strong normalization and non-orthogonal rewriting systems. This new criterion is implemented in the type-checker Dedukti.