{"title":"Particle filter track-before-detect algorithm with Lamarckian inheritance for improved dim target tracking","authors":"Lin Li, Yun Li","doi":"10.1109/CEC.2017.7969437","DOIUrl":null,"url":null,"abstract":"Particle filter track-before-detect (PF-TBD) algorithms offer improvements over track-after-detect algorithms in detecting and tracking dim targets. However, it suffers from the particle collapsing problem, which can lead to deteriorated detection and tracking performance. To address this issue, a Lamarckian particle filter track-before-detect (LPF-TBD) algorithm is developed in this paper. In the LPF-TBD, before a TBD resampling process, a particle update strategy is applied, which is based on Lamarckian overriding and elitist operators designed to improve the particle diversity and efficiency. The effectiveness of the LPF-TBD algorithm is demonstrated using a widely adopted experiment on a target with a low signal-to-noise ratio in an image sequence. Compared with the currently-popular multinomial resampling PF-TBD method, the posterior distribution in the LPF-TBD can be more sufficiently approximated by the particles. Test results show that the LPF-TBD offers higher detection and tracking performance, while strengthening the algorithmic efficiency of particle filtering and evolutionary algorithms.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Particle filter track-before-detect (PF-TBD) algorithms offer improvements over track-after-detect algorithms in detecting and tracking dim targets. However, it suffers from the particle collapsing problem, which can lead to deteriorated detection and tracking performance. To address this issue, a Lamarckian particle filter track-before-detect (LPF-TBD) algorithm is developed in this paper. In the LPF-TBD, before a TBD resampling process, a particle update strategy is applied, which is based on Lamarckian overriding and elitist operators designed to improve the particle diversity and efficiency. The effectiveness of the LPF-TBD algorithm is demonstrated using a widely adopted experiment on a target with a low signal-to-noise ratio in an image sequence. Compared with the currently-popular multinomial resampling PF-TBD method, the posterior distribution in the LPF-TBD can be more sufficiently approximated by the particles. Test results show that the LPF-TBD offers higher detection and tracking performance, while strengthening the algorithmic efficiency of particle filtering and evolutionary algorithms.