Deep Learning Jaringan Saraf Tiruan Untuk Pemecahan Masalah Deteksi Penyakit Daun Apel

Sutriawan Sutriawan, A. Z. Fanani, Farrikh Alzami, Ruri Suko Basuki
{"title":"Deep Learning Jaringan Saraf Tiruan Untuk Pemecahan Masalah Deteksi Penyakit Daun Apel","authors":"Sutriawan Sutriawan, A. Z. Fanani, Farrikh Alzami, Ruri Suko Basuki","doi":"10.30646/tikomsin.v11i1.729","DOIUrl":null,"url":null,"abstract":"Diseases on apple leaves are becoming a major issue for apple growers since they can cause the crop to fail. Due to the diversity of diseases that can affect apple leaves, it can be challenging for farmers to determine the cause of leaf damage. The purpose of this research is to evaluate a convolutional neural network (CNN) method for its potential use in solving the problem of apple leaf disease identification. Four types of illness are dealt with: normal, multi-illness, rusty, and scabby. Many methods, such as data preparation and a preset VGG-16 artificial neural network (CNN) architecture, are recommended for use in the deep artificial neural network processing method. The most precise outcomes occurred when the beta parameter value was set to 2 = 0.999 at Ephoch to 85/100 with an accuracy of 0.7582, and when the epsilon parameter value was set to 1e-07 at Ephoch to 32/100 with an accuracy of 0.7582 with the best accuracy.","PeriodicalId":189908,"journal":{"name":"Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30646/tikomsin.v11i1.729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Diseases on apple leaves are becoming a major issue for apple growers since they can cause the crop to fail. Due to the diversity of diseases that can affect apple leaves, it can be challenging for farmers to determine the cause of leaf damage. The purpose of this research is to evaluate a convolutional neural network (CNN) method for its potential use in solving the problem of apple leaf disease identification. Four types of illness are dealt with: normal, multi-illness, rusty, and scabby. Many methods, such as data preparation and a preset VGG-16 artificial neural network (CNN) architecture, are recommended for use in the deep artificial neural network processing method. The most precise outcomes occurred when the beta parameter value was set to 2 = 0.999 at Ephoch to 85/100 with an accuracy of 0.7582, and when the epsilon parameter value was set to 1e-07 at Ephoch to 32/100 with an accuracy of 0.7582 with the best accuracy.
深层学习神经组织的模仿,以解决苹果叶疾病的检测问题
苹果叶子上的疾病正成为苹果种植者的一个主要问题,因为它们会导致庄稼歉收。由于影响苹果叶片的疾病多种多样,因此对农民来说,确定叶片受损的原因可能具有挑战性。本研究的目的是评估卷积神经网络(CNN)方法在解决苹果叶片病害识别问题中的潜在应用。处理四种类型的疾病:正常,多重疾病,生锈和结痂。在深度人工神经网络处理方法中,推荐使用多种方法,如数据准备和预设的VGG-16人工神经网络(CNN)架构。在以弗所至85/100时,β参数值设为2 = 0.999,准确度为0.7582;在以弗所至32/100时,epsilon参数值设为1e-07,准确度为0.7582,准确度最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信