Performance evaluation of bursty traffic using neural networks

H. Mehrvar, T. Le-Ngoc, J. Huang
{"title":"Performance evaluation of bursty traffic using neural networks","authors":"H. Mehrvar, T. Le-Ngoc, J. Huang","doi":"10.1109/CCECE.1996.548312","DOIUrl":null,"url":null,"abstract":"We investigate the application of neural networks to evaluate the performance, packet loss probability, of a bursty traffic stream. We show, that in a bursty multimedia environment, performance is a function of burstiness, Hurst parameter, traffic intensity and buffer size. In a closed loop traffic control system each source uses this reported measure to regulate their traffic to the destination queue. A multilayer neural network is used to capture the functional relationship between the loss probability and the traffic descriptor (Hurst parameter and traffic intensity) for a fixed value of buffer size. The neural network approach makes practical real-time performance measurement and hence the control of traffic in an adaptive environment.","PeriodicalId":269440,"journal":{"name":"Proceedings of 1996 Canadian Conference on Electrical and Computer Engineering","volume":"257 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1996 Canadian Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.1996.548312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We investigate the application of neural networks to evaluate the performance, packet loss probability, of a bursty traffic stream. We show, that in a bursty multimedia environment, performance is a function of burstiness, Hurst parameter, traffic intensity and buffer size. In a closed loop traffic control system each source uses this reported measure to regulate their traffic to the destination queue. A multilayer neural network is used to capture the functional relationship between the loss probability and the traffic descriptor (Hurst parameter and traffic intensity) for a fixed value of buffer size. The neural network approach makes practical real-time performance measurement and hence the control of traffic in an adaptive environment.
基于神经网络的突发交通性能评价
我们研究了应用神经网络来评估突发流量流的性能和丢包概率。结果表明,在突发多媒体环境中,性能是突发性、Hurst参数、流量强度和缓冲区大小的函数。在闭环流量控制系统中,每个源使用该报告措施来调节其到目的队列的流量。采用多层神经网络捕获固定缓冲区大小值下的损失概率与流量描述符(Hurst参数和流量强度)之间的函数关系。神经网络方法可以实现实时性能测量,从而实现自适应环境下的流量控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信