{"title":"Pivot-based Candidate Retrieval for Cross-lingual Entity Linking","authors":"Qian Liu, Xiubo Geng, Jie Lu, Daxin Jiang","doi":"10.1145/3442381.3449852","DOIUrl":null,"url":null,"abstract":"Entity candidate retrieval plays a critical role in cross-lingual entity linking (XEL). In XEL, entity candidate retrieval needs to retrieve a list of plausible candidate entities from a large knowledge graph in a target language given a piece of text in a sentence or question, namely a mention, in a source language. Existing works mainly fall into two categories: lexicon-based and semantic-based approaches. The lexicon-based approach usually creates cross-lingual and mention-entity lexicons, which is effective but relies heavily on bilingual resources (e.g. inter-language links in Wikipedia). The semantic-based approach maps mentions and entities in different languages to a unified embedding space, which reduces dependence on large-scale bilingual dictionaries. However, its effectiveness is limited by the representation capacity of fixed-length vectors. In this paper, we propose a pivot-based approach which inherits the advantages of the aforementioned two approaches while avoiding their limitations. It takes an intermediary set of plausible target-language mentions as pivots to bridge the two types of gaps: cross-lingual gap and mention-entity gap. Specifically, it first converts mentions in the source language into an intermediary set of plausible mentions in the target language by cross-lingual semantic retrieval and a selective mechanism, and then retrieves candidate entities based on the generated mentions by lexical retrieval. The proposed approach only relies on a small bilingual word dictionary, and fully exploits the benefits of both lexical and semantic matching. Experimental results on two challenging cross-lingual entity linking datasets spanning over 11 languages show that the pivot-based approach outperforms both the lexicon-based and semantic-based approach by a large margin.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"281 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442381.3449852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Entity candidate retrieval plays a critical role in cross-lingual entity linking (XEL). In XEL, entity candidate retrieval needs to retrieve a list of plausible candidate entities from a large knowledge graph in a target language given a piece of text in a sentence or question, namely a mention, in a source language. Existing works mainly fall into two categories: lexicon-based and semantic-based approaches. The lexicon-based approach usually creates cross-lingual and mention-entity lexicons, which is effective but relies heavily on bilingual resources (e.g. inter-language links in Wikipedia). The semantic-based approach maps mentions and entities in different languages to a unified embedding space, which reduces dependence on large-scale bilingual dictionaries. However, its effectiveness is limited by the representation capacity of fixed-length vectors. In this paper, we propose a pivot-based approach which inherits the advantages of the aforementioned two approaches while avoiding their limitations. It takes an intermediary set of plausible target-language mentions as pivots to bridge the two types of gaps: cross-lingual gap and mention-entity gap. Specifically, it first converts mentions in the source language into an intermediary set of plausible mentions in the target language by cross-lingual semantic retrieval and a selective mechanism, and then retrieves candidate entities based on the generated mentions by lexical retrieval. The proposed approach only relies on a small bilingual word dictionary, and fully exploits the benefits of both lexical and semantic matching. Experimental results on two challenging cross-lingual entity linking datasets spanning over 11 languages show that the pivot-based approach outperforms both the lexicon-based and semantic-based approach by a large margin.