A. Duchowski, D. House, Jordan Gestring, Robert Congdon, Lech Swirski, N. Dodgson, Krzysztof Krejtz, I. Krejtz
{"title":"Comparing estimated gaze depth in virtual and physical environments","authors":"A. Duchowski, D. House, Jordan Gestring, Robert Congdon, Lech Swirski, N. Dodgson, Krzysztof Krejtz, I. Krejtz","doi":"10.1145/2578153.2578168","DOIUrl":null,"url":null,"abstract":"We show that the error in 3D gaze depth (vergence) estimated from binocularly-tracked gaze disparity is related to the viewing distance of the screen calibration plane at which 2D gaze is recorded. In a stereoscopic (virtual) environment, this relationship is evident in gaze to target depth error: vergence error behind the screen is greater than in front of the screen and is lowest at the screen depth. In a physical environment, with no accommodation-vergence conflict, the magnitude of vergence error in front of the 2D calibration plane appears reversed, increasing with distance from the viewer.","PeriodicalId":142459,"journal":{"name":"Proceedings of the Symposium on Eye Tracking Research and Applications","volume":"281 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Symposium on Eye Tracking Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2578153.2578168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
We show that the error in 3D gaze depth (vergence) estimated from binocularly-tracked gaze disparity is related to the viewing distance of the screen calibration plane at which 2D gaze is recorded. In a stereoscopic (virtual) environment, this relationship is evident in gaze to target depth error: vergence error behind the screen is greater than in front of the screen and is lowest at the screen depth. In a physical environment, with no accommodation-vergence conflict, the magnitude of vergence error in front of the 2D calibration plane appears reversed, increasing with distance from the viewer.