Adaptive decision fusion using genetic algorithm

Ji Wang, Sayandeep Acharya, Moshe Kam
{"title":"Adaptive decision fusion using genetic algorithm","authors":"Ji Wang, Sayandeep Acharya, Moshe Kam","doi":"10.1109/CISS.2016.7460536","DOIUrl":null,"url":null,"abstract":"We consider a parallel distributed decision fusion system consisting of a bank of local sensors and a fusion center. Each local sensor makes binary decisions based on its own observations. The decision is to accept one of the hypotheses, H0 or H1. Each local sensor transmits its decisions to the fusion center over an error free channel. The fusion center combines all the local decisions to obtain a global decision. For observations that are statistically independent conditioned on the hypothesis and fixed local decisions, the Chair-Varshney fusion rule minimizes the global Bayesian risk. However, this fusion rule requires knowledge of local sensor performance parameters and the prior probabilities of the hypothesis set. In most applications, these are unavailable. Moreover, local sensor performance may be time varying. Several studies attempted on-line estimation of the unknown local performance metrics and prior probabilities. We develop a fusion rule that applies a genetic algorithm to fuse the local sensors' binary decisions. The rule adapts to time varying local sensor error characteristics and provides near-optimal performance at the expense of a larger number of observations and higher computational overhead.","PeriodicalId":346776,"journal":{"name":"2016 Annual Conference on Information Science and Systems (CISS)","volume":"594 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Annual Conference on Information Science and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2016.7460536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We consider a parallel distributed decision fusion system consisting of a bank of local sensors and a fusion center. Each local sensor makes binary decisions based on its own observations. The decision is to accept one of the hypotheses, H0 or H1. Each local sensor transmits its decisions to the fusion center over an error free channel. The fusion center combines all the local decisions to obtain a global decision. For observations that are statistically independent conditioned on the hypothesis and fixed local decisions, the Chair-Varshney fusion rule minimizes the global Bayesian risk. However, this fusion rule requires knowledge of local sensor performance parameters and the prior probabilities of the hypothesis set. In most applications, these are unavailable. Moreover, local sensor performance may be time varying. Several studies attempted on-line estimation of the unknown local performance metrics and prior probabilities. We develop a fusion rule that applies a genetic algorithm to fuse the local sensors' binary decisions. The rule adapts to time varying local sensor error characteristics and provides near-optimal performance at the expense of a larger number of observations and higher computational overhead.
基于遗传算法的自适应决策融合
我们考虑了一个由一组局部传感器和一个融合中心组成的并行分布式决策融合系统。每个局部传感器根据自己的观察结果做出二元决策。决定是接受其中一个假设,H0或H1。每个本地传感器通过无误差通道将其决策传输到融合中心。融合中心将所有的局部决策组合在一起,得到全局决策。对于统计上独立于假设和固定的局部决策的观测,Chair-Varshney融合规则最小化了全局贝叶斯风险。然而,这种融合规则需要了解局部传感器性能参数和假设集的先验概率。在大多数应用程序中,这些是不可用的。此外,局部传感器的性能可能是时变的。一些研究尝试在线估计未知的局部性能指标和先验概率。提出了一种融合规则,利用遗传算法对局部传感器的二值决策进行融合。该规则适应时变的局部传感器误差特征,并以大量观测和更高的计算开销为代价提供接近最优的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信