Input-Aware Auto-Tuning of Compute-Bound HPC Kernels

Philippe Tillet, David D. Cox
{"title":"Input-Aware Auto-Tuning of Compute-Bound HPC Kernels","authors":"Philippe Tillet, David D. Cox","doi":"10.1145/3126908.3126939","DOIUrl":null,"url":null,"abstract":"Efficient implementations of HPC applications for parallel architectures generally rely on external software packages (e.g., BLAS, LAPACK, CUDNN).While these libraries provide highly optimized routines for certain characteristics of inputs (e.g., square matrices), they generally do not retain optimal performance across the wide range of problems encountered in practice. In this paper, we present an input-aware autotuning framework for matrix multiplications and convolutions, ISAAC, which uses predictive modeling techniques to drive highly parameterized PTX code templates towards not only hardware-, but also application-specific kernels. Numerical experiments on the NVIDIA Maxwell and Pascal architectures show up to 3xperformance gains over both cuBLAS and cuDNN after only a few hours of auto-tuning.","PeriodicalId":204241,"journal":{"name":"SC17: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC17: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3126908.3126939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Efficient implementations of HPC applications for parallel architectures generally rely on external software packages (e.g., BLAS, LAPACK, CUDNN).While these libraries provide highly optimized routines for certain characteristics of inputs (e.g., square matrices), they generally do not retain optimal performance across the wide range of problems encountered in practice. In this paper, we present an input-aware autotuning framework for matrix multiplications and convolutions, ISAAC, which uses predictive modeling techniques to drive highly parameterized PTX code templates towards not only hardware-, but also application-specific kernels. Numerical experiments on the NVIDIA Maxwell and Pascal architectures show up to 3xperformance gains over both cuBLAS and cuDNN after only a few hours of auto-tuning.
计算绑定HPC内核的输入感知自动调优
并行架构的高性能计算应用程序的有效实现通常依赖于外部软件包(例如,BLAS, LAPACK, CUDNN)。虽然这些库为输入的某些特征(例如,方阵)提供了高度优化的例程,但它们通常不能在实践中遇到的广泛问题中保持最佳性能。在本文中,我们提出了一个用于矩阵乘法和卷积的输入感知自动调优框架ISAAC,它使用预测建模技术来驱动高度参数化的PTX代码模板,不仅针对硬件,而且针对特定的应用程序内核。在NVIDIA Maxwell和Pascal架构上的数值实验显示,经过几个小时的自动调整后,cuBLAS和cuDNN的性能提高了3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信