Bohemian Matrix Geometry

Robert M Corless, G. Labahn, Dan Piponi, Leili Rafiee Sevyeri
{"title":"Bohemian Matrix Geometry","authors":"Robert M Corless, G. Labahn, Dan Piponi, Leili Rafiee Sevyeri","doi":"10.1145/3476446.3536177","DOIUrl":null,"url":null,"abstract":"A Bohemian matrix family is a set of matrices all of whose entries are drawn from a fixed, usually discrete and hence bounded, subset of a field of characteristic zero. Originally these were integers---hence the name, from the acronym BOunded HEight Matrix of Integers (BOHEMI)---but other kinds of entries are also interesting. Some kinds of questions about Bohemian matrices can be answered by numerical computation, but sometimes exact computation is better. In this paper we explore some Bohemian families (symmetric, upper Hessenberg, or Toeplitz) computationally, and answer some open questions posed about the distributions of eigenvalue densities.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3536177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A Bohemian matrix family is a set of matrices all of whose entries are drawn from a fixed, usually discrete and hence bounded, subset of a field of characteristic zero. Originally these were integers---hence the name, from the acronym BOunded HEight Matrix of Integers (BOHEMI)---but other kinds of entries are also interesting. Some kinds of questions about Bohemian matrices can be answered by numerical computation, but sometimes exact computation is better. In this paper we explore some Bohemian families (symmetric, upper Hessenberg, or Toeplitz) computationally, and answer some open questions posed about the distributions of eigenvalue densities.
波西米亚矩阵几何
波希米亚矩阵族是一组矩阵,它们的所有元素都来自特征为零的域的一个固定的、通常是离散的、因此是有界的子集。最初这些是整数——因此得名,来自整数的有界高度矩阵(BOHEMI)——但其他类型的条目也很有趣。关于波西米亚矩阵的一些问题可以用数值计算来回答,但有时精确计算更好。本文从计算上探讨了一些波西米亚族(对称族、上Hessenberg族或Toeplitz族),并回答了一些关于特征值密度分布的开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信