Data-part: A technique for privacy protection in databases

A. Gupta, A. Sunsunwal, S. Singhal
{"title":"Data-part: A technique for privacy protection in databases","authors":"A. Gupta, A. Sunsunwal, S. Singhal","doi":"10.1109/INMIC.2008.4777735","DOIUrl":null,"url":null,"abstract":"In order to protect individuals' privacy, the technique of k-anonymization has been proposed to de-associate sensitive attributes from the corresponding identifiers. Datafly is one such technique which generalizes the information up to a level in such a way that each individual is hidden among at least k-1 other individuals. But this technique sometimes over distorts the data which may render it useless for statistical and research purposes. In this paper, we present a method called ldquoData-Partrdquo, based on ldquoDataflyrdquo, but with certain modifications, which tries to minimize the distortion of data while still maintaining adequate privacy protection. We prove it through results and experiments at the end of this paper.","PeriodicalId":112530,"journal":{"name":"2008 IEEE International Multitopic Conference","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Multitopic Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2008.4777735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to protect individuals' privacy, the technique of k-anonymization has been proposed to de-associate sensitive attributes from the corresponding identifiers. Datafly is one such technique which generalizes the information up to a level in such a way that each individual is hidden among at least k-1 other individuals. But this technique sometimes over distorts the data which may render it useless for statistical and research purposes. In this paper, we present a method called ldquoData-Partrdquo, based on ldquoDataflyrdquo, but with certain modifications, which tries to minimize the distortion of data while still maintaining adequate privacy protection. We prove it through results and experiments at the end of this paper.
数据部分:一种在数据库中保护隐私的技术
为了保护个人隐私,提出了k-匿名化技术,将敏感属性从对应的标识符中去关联。Datafly就是这样一种技术,它将信息一般化到一定程度,使每个个体都隐藏在至少k-1个其他个体中。但这种技术有时会过度扭曲数据,使其对统计和研究目的毫无用处。在本文中,我们提出了一种名为ldquoData-Partrdquo的方法,该方法基于ldquoDataflyrdquo,但进行了一定的修改,试图在保持足够隐私保护的同时最小化数据失真。本文最后通过结果和实验证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信