Machine Learning Techniques for Enhancing Maritime Surveillance Based on GMTI Radar and AIS

Kaeye Dästner, Bastian von Haßler zu Roseneckh-Köhler, F. Opitz, Michael Rottmaier, Elke Schmid
{"title":"Machine Learning Techniques for Enhancing Maritime Surveillance Based on GMTI Radar and AIS","authors":"Kaeye Dästner, Bastian von Haßler zu Roseneckh-Köhler, F. Opitz, Michael Rottmaier, Elke Schmid","doi":"10.23919/IRS.2018.8447961","DOIUrl":null,"url":null,"abstract":"Classical maritime surveillance systems are enhanced with disruptive elements comingf om big data and machine learning. Available receiver networks deliver a huge amount of worldwide maritime traffc data. The information includes the position as well as signifcant attributes of all vessels, which are equipped with AIS. The processing of this data lake with modern machine learning and big data techniques offer improved decision support for the user. This is especially the case, when AIS is not available and only sensor information, e.g., GMTI is gathered. New design concepts – e.g. the lambda architecture offer the modular integration of these new assets within existing surveillance systems.","PeriodicalId":436201,"journal":{"name":"2018 19th International Radar Symposium (IRS)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 19th International Radar Symposium (IRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IRS.2018.8447961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Classical maritime surveillance systems are enhanced with disruptive elements comingf om big data and machine learning. Available receiver networks deliver a huge amount of worldwide maritime traffc data. The information includes the position as well as signifcant attributes of all vessels, which are equipped with AIS. The processing of this data lake with modern machine learning and big data techniques offer improved decision support for the user. This is especially the case, when AIS is not available and only sensor information, e.g., GMTI is gathered. New design concepts – e.g. the lambda architecture offer the modular integration of these new assets within existing surveillance systems.
基于GMTI雷达和AIS的海上监视增强机器学习技术
大数据和机器学习带来的颠覆性因素增强了传统的海上监视系统。可用的接收网络提供了大量的全球海上交通数据。这些信息包括所有配备了AIS系统的船只的位置和重要属性。现代机器学习和大数据技术对数据湖的处理为用户提供了更好的决策支持。当AIS系统不可用时,仅收集传感器信息(例如GMTI)时尤其如此。新的设计概念-例如lambda架构提供了现有监控系统中这些新资产的模块化集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信