Optimization of TESPAR Features using Robust F-Ratio for Speaker Recognition

K. Satya Prasad, K. Anitha Sheela, M. Sridevi
{"title":"Optimization of TESPAR Features using Robust F-Ratio for Speaker Recognition","authors":"K. Satya Prasad, K. Anitha Sheela, M. Sridevi","doi":"10.1109/ICSCN.2007.350673","DOIUrl":null,"url":null,"abstract":"This paper deals with implementing an efficient optimization technique for designing an automatic speaker recognition (ASR) System, which uses average F-ratio score of TESPAR features, to yield high recognition accuracy even in adverse noisy conditions. A new ranking scheme is also proposed in order to stabilize the rank of features in various noise levels by taking arithmetic mean of the F-Ratio scores obtained from various levels of signal to noise ratio (SNR). The result is presented for a text-dependent ASR system with 20 speaker database. An RBF (radial basis function) neural network is used for recognition purpose","PeriodicalId":257948,"journal":{"name":"2007 International Conference on Signal Processing, Communications and Networking","volume":"252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Signal Processing, Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCN.2007.350673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper deals with implementing an efficient optimization technique for designing an automatic speaker recognition (ASR) System, which uses average F-ratio score of TESPAR features, to yield high recognition accuracy even in adverse noisy conditions. A new ranking scheme is also proposed in order to stabilize the rank of features in various noise levels by taking arithmetic mean of the F-Ratio scores obtained from various levels of signal to noise ratio (SNR). The result is presented for a text-dependent ASR system with 20 speaker database. An RBF (radial basis function) neural network is used for recognition purpose
基于鲁棒f比的TESPAR特征识别优化
本文研究了一种有效的优化设计方法,该方法利用TESPAR特征的平均f比得分,在不利的噪声条件下也能获得较高的识别精度。提出了一种新的排序方案,通过对不同信噪比(SNR)水平的F-Ratio分数取算术平均值来稳定不同噪声水平下特征的排序。给出了基于文本的20人语音识别系统的结果。采用径向基函数神经网络进行识别
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信