A Randomized Approach for Approximating the Number of Frequent Sets

Mario Boley, H. Grosskreutz
{"title":"A Randomized Approach for Approximating the Number of Frequent Sets","authors":"Mario Boley, H. Grosskreutz","doi":"10.1109/ICDM.2008.85","DOIUrl":null,"url":null,"abstract":"We investigate the problem of counting the number of frequent (item)sets - a problem known to be intractable in terms of an exact polynomial time computation. In this paper, we show that it is in general also hard to approximate. Subsequently, a randomized counting algorithm is developed using the Markov chain Monte Carlo method. While for general inputs an exponential running time is needed in order to guarantee a certain approximation bound, we empirically show that the algorithm still has the desired accuracy on real-world datasets when its running time is capped polynomially.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

We investigate the problem of counting the number of frequent (item)sets - a problem known to be intractable in terms of an exact polynomial time computation. In this paper, we show that it is in general also hard to approximate. Subsequently, a randomized counting algorithm is developed using the Markov chain Monte Carlo method. While for general inputs an exponential running time is needed in order to guarantee a certain approximation bound, we empirically show that the algorithm still has the desired accuracy on real-world datasets when its running time is capped polynomially.
一种近似频繁集数目的随机化方法
我们研究了计算频繁(项目)集的数量的问题-一个已知的难以处理的问题,在一个精确的多项式时间计算。在本文中,我们证明了它通常也难以近似。随后,利用马尔可夫链蒙特卡罗方法,提出了一种随机计数算法。虽然对于一般输入需要指数运行时间来保证一定的近似边界,但我们的经验表明,当其运行时间为多项式限制时,该算法在实际数据集上仍然具有所需的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信