Ultrasound Anomaly Detection Based on Variational Autoencoders

Fran Milković, Branimir Filipovic, M. Subašić, T. Petković, S. Lončarić, M. Budimir
{"title":"Ultrasound Anomaly Detection Based on Variational Autoencoders","authors":"Fran Milković, Branimir Filipovic, M. Subašić, T. Petković, S. Lončarić, M. Budimir","doi":"10.1109/ISPA52656.2021.9552041","DOIUrl":null,"url":null,"abstract":"Analysis of ultrasonic testing (UT) data is a time-consuming assignment. In order to make it less demanding we propose an approach based on a variational autoencoder (VAE) to filter out the scans without anomalies/defects and in doing so, partially automate the procedure. The implemented approach uses an additional encoder network allowing to encode the reconstructed images. The differences in encodings of input and reconstructed images have shown to be good indicators of anomalous data. Anomaly detection results surpass the results of other VAE based anomaly criteria.","PeriodicalId":131088,"journal":{"name":"2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA52656.2021.9552041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Analysis of ultrasonic testing (UT) data is a time-consuming assignment. In order to make it less demanding we propose an approach based on a variational autoencoder (VAE) to filter out the scans without anomalies/defects and in doing so, partially automate the procedure. The implemented approach uses an additional encoder network allowing to encode the reconstructed images. The differences in encodings of input and reconstructed images have shown to be good indicators of anomalous data. Anomaly detection results surpass the results of other VAE based anomaly criteria.
基于变分自编码器的超声异常检测
超声检测(UT)数据的分析是一项耗时的工作。为了降低要求,我们提出了一种基于变分自动编码器(VAE)的方法,以过滤掉没有异常/缺陷的扫描,并在此过程中部分自动化。所实现的方法使用允许对重构图像进行编码的附加编码器网络。输入图像和重建图像编码的差异已被证明是异常数据的良好指标。异常检测结果优于其他基于VAE的异常准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信