Multilabel 12-Lead Electrocardiogram Classification Using Gradient Boosting Tree Ensemble

A. W. Wong, Weijie Sun, S. Kalmady, P. Kaul, Abram Hindle
{"title":"Multilabel 12-Lead Electrocardiogram Classification Using Gradient Boosting Tree Ensemble","authors":"A. W. Wong, Weijie Sun, S. Kalmady, P. Kaul, Abram Hindle","doi":"10.22489/CinC.2020.128","DOIUrl":null,"url":null,"abstract":"The 12-lead electrocardiogram (ECG) is a commonly used tool for detecting cardiac abnormalities such as atrial fibrillation, blocks, and irregular complexes. For the Phy-sioNet/CinC 2020 Challenge, we built an algorithm using gradient boosted tree ensembles fitted on morphology and signal processing features to classify ECG diagnosis. For each lead, we derive features from heart rate variability, PQRST template shape, and the full signal wave-form. We join the features of all 12 leads to fit an ensemble of gradient boosting decision trees to predict probabilities of ECG instances belonging to each class. We train a phase one set of feature importance determining models to isolate the top 1,000 most important features to use in our phase two diagnosis prediction models. We use repeated random sub-sampling by splitting our dataset of 43,101 records into 100 independent runs of 85:15 training/validation splits for our internal evaluation results. Our methodology generates us an official phase validation set score of 0.476 and test set score of − 0.080 under the team name, CVC, placing us 36 out of 41 in the rankings.","PeriodicalId":407282,"journal":{"name":"2020 Computing in Cardiology","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Computing in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2020.128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The 12-lead electrocardiogram (ECG) is a commonly used tool for detecting cardiac abnormalities such as atrial fibrillation, blocks, and irregular complexes. For the Phy-sioNet/CinC 2020 Challenge, we built an algorithm using gradient boosted tree ensembles fitted on morphology and signal processing features to classify ECG diagnosis. For each lead, we derive features from heart rate variability, PQRST template shape, and the full signal wave-form. We join the features of all 12 leads to fit an ensemble of gradient boosting decision trees to predict probabilities of ECG instances belonging to each class. We train a phase one set of feature importance determining models to isolate the top 1,000 most important features to use in our phase two diagnosis prediction models. We use repeated random sub-sampling by splitting our dataset of 43,101 records into 100 independent runs of 85:15 training/validation splits for our internal evaluation results. Our methodology generates us an official phase validation set score of 0.476 and test set score of − 0.080 under the team name, CVC, placing us 36 out of 41 in the rankings.
使用梯度增强树集合的多标签12导联心电图分类
12导联心电图(ECG)是一种常用的检测心脏异常的工具,如心房颤动、阻滞和不规则复合体。在Phy-sioNet/CinC 2020挑战赛中,我们构建了一种基于形态学和信号处理特征的梯度增强树集成来对ECG诊断进行分类的算法。对于每个导联,我们从心率变异性、PQRST模板形状和完整的信号波形中得出特征。我们将所有12个导联的特征结合起来,拟合一个梯度增强决策树的集合,以预测属于每个类别的ECG实例的概率。我们训练了第一阶段的一组特征重要性确定模型,以分离出最重要的1000个特征,用于第二阶段的诊断预测模型。我们使用重复的随机子抽样,将43101条记录的数据集分成100个独立的运行,以85:15的训练/验证分割来进行内部评估结果。我们的方法为我们在团队名称CVC下生成了0.476的官方阶段验证集分数和- 0.080的测试集分数,在41个排名中排名第36位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信