Swarm intelligence based author identification for digital typewritten text

A. R. Baig, Hassan Mujtaba Kayani
{"title":"Swarm intelligence based author identification for digital typewritten text","authors":"A. R. Baig, Hassan Mujtaba Kayani","doi":"10.1109/ANTI-CYBERCRIME.2015.7351933","DOIUrl":null,"url":null,"abstract":"In this study we report our research on learning an accurate and easily interpretable classifier model for authorship classification of typewritten digital texts. For this purpose we use Ant Colony Optimization; a meta-heuristic based on swarm intelligence. Unlike black box type classifiers, the decision making rules produced by the proposed method are understandable by people familiar to the domain and can be easily enhanced with the addition of domain knowledge. Our experimental results show that the method is feasible and more accurate than decision trees.","PeriodicalId":220556,"journal":{"name":"2015 First International Conference on Anti-Cybercrime (ICACC)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 First International Conference on Anti-Cybercrime (ICACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTI-CYBERCRIME.2015.7351933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study we report our research on learning an accurate and easily interpretable classifier model for authorship classification of typewritten digital texts. For this purpose we use Ant Colony Optimization; a meta-heuristic based on swarm intelligence. Unlike black box type classifiers, the decision making rules produced by the proposed method are understandable by people familiar to the domain and can be easily enhanced with the addition of domain knowledge. Our experimental results show that the method is feasible and more accurate than decision trees.
基于群体智能的数字打字文本作者识别
在这项研究中,我们报告了我们关于学习一个准确且易于解释的分类器模型的研究,用于打字数字文本的作者身份分类。为此,我们使用蚁群优化;基于群体智能的元启发式算法。与黑盒分类器不同,该方法生成的决策规则易于被熟悉该领域的人理解,并且可以通过添加领域知识轻松增强。实验结果表明,该方法是可行的,并且比决策树方法更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信