Generating grammar questions using corpus data in L2 learning

Kyusong Lee, Soo-Ok Kweon, Hongsuck Seo, G. G. Lee
{"title":"Generating grammar questions using corpus data in L2 learning","authors":"Kyusong Lee, Soo-Ok Kweon, Hongsuck Seo, G. G. Lee","doi":"10.1109/SLT.2012.6424265","DOIUrl":null,"url":null,"abstract":"This paper examines how grammar questions are automatically generated for L2 learning by applying a sequential labeling technique to learner corpora. We developed a model that helps detect possible error positions and select the most appropriate form among choices. Discriminant models such as conditional random field and maximum entropy are used to generate the error identification question. Questions generated by the proposed method corresponded highly to questions that experts made. Our data-driven approach lends itself to any language without costing expensive expertise.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper examines how grammar questions are automatically generated for L2 learning by applying a sequential labeling technique to learner corpora. We developed a model that helps detect possible error positions and select the most appropriate form among choices. Discriminant models such as conditional random field and maximum entropy are used to generate the error identification question. Questions generated by the proposed method corresponded highly to questions that experts made. Our data-driven approach lends itself to any language without costing expensive expertise.
在二语学习中使用语料库数据生成语法问题
本文研究了如何通过对学习者语料库应用顺序标记技术来自动生成第二语言学习中的语法问题。我们开发了一个模型,帮助检测可能的错误位置,并在选择中选择最合适的形式。使用条件随机场和最大熵等判别模型来生成错误识别问题。该方法生成的问题与专家提出的问题高度吻合。我们的数据驱动方法适用于任何语言,而无需花费昂贵的专业知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信