Data-driven fault diagnosis of oil rig motor pumps applying automatic definition and selection of features

E. D. Wandekokem, Frederico Thomaz de Aquino Franzosi, T. Rauber, F. M. Varejão, R. J. Batista
{"title":"Data-driven fault diagnosis of oil rig motor pumps applying automatic definition and selection of features","authors":"E. D. Wandekokem, Frederico Thomaz de Aquino Franzosi, T. Rauber, F. M. Varejão, R. J. Batista","doi":"10.1109/DEMPED.2009.5292765","DOIUrl":null,"url":null,"abstract":"We report about fault diagnosis experiments to improve the maintenance quality of motor pumps installed on oil rigs. We rely on the data-driven approach to the learning of the fault classes, i.e. supervised learning in pattern recognition. Features are extracted from the vibration signals to detect and diagnose misalignment and mechanical looseness problems. We show the results of automatic pattern recognition methods to define and select features that describe the faults of the provided examples. The support vector machine is chosen as the classification architecture.","PeriodicalId":405777,"journal":{"name":"2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2009.5292765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We report about fault diagnosis experiments to improve the maintenance quality of motor pumps installed on oil rigs. We rely on the data-driven approach to the learning of the fault classes, i.e. supervised learning in pattern recognition. Features are extracted from the vibration signals to detect and diagnose misalignment and mechanical looseness problems. We show the results of automatic pattern recognition methods to define and select features that describe the faults of the provided examples. The support vector machine is chosen as the classification architecture.
基于特征自动定义和选择的石油钻机电油泵数据驱动故障诊断
为提高石油钻机电泵的维修质量,进行了故障诊断实验。我们依靠数据驱动的方法来学习故障类,即模式识别中的监督学习。从振动信号中提取特征以检测和诊断不对准和机械松动问题。我们展示了自动模式识别方法的结果,以定义和选择描述所提供示例的故障的特征。选择支持向量机作为分类体系结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信