Chemically Self-Propelled 3D-Printed Microbots

Dengfeng Li, Yanting Liu, Yuanyuan Yang, Yajing Shen
{"title":"Chemically Self-Propelled 3D-Printed Microbots","authors":"Dengfeng Li, Yanting Liu, Yuanyuan Yang, Yajing Shen","doi":"10.1109/MARSS.2018.8481228","DOIUrl":null,"url":null,"abstract":"The self-propulsion ability and transfering continuous surrounding chemical fuels into mechanical movement, makes chemical microbots be a promising autonomous device in environmental and biomedical engineering. At present, chemical propulsion principle and motion model have been well studied. To realize more sophisticated function, more interest are being focused on complex 3D design in microbots. Here, we demonstrate a 3D chemically catalytic microbot with effective driving and reliable magnetic-response ability. The standing microstructure is fabricated by 3D micro-printing and covered by Ni and Pt layer in sputtering deposition process. The coating Pt layer provides the unidirectional catalytic propelled power. Under external magnetics field, the microbots' moving direction could be changed easily. The speed of the 3D microbots can reach 450J.1m/s in hydrogen peroxide solution of 30% concentration. The chemical microbots prepared by 3D micro-printing technique pave a way for the future complex 3D microbots.","PeriodicalId":118389,"journal":{"name":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MARSS.2018.8481228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The self-propulsion ability and transfering continuous surrounding chemical fuels into mechanical movement, makes chemical microbots be a promising autonomous device in environmental and biomedical engineering. At present, chemical propulsion principle and motion model have been well studied. To realize more sophisticated function, more interest are being focused on complex 3D design in microbots. Here, we demonstrate a 3D chemically catalytic microbot with effective driving and reliable magnetic-response ability. The standing microstructure is fabricated by 3D micro-printing and covered by Ni and Pt layer in sputtering deposition process. The coating Pt layer provides the unidirectional catalytic propelled power. Under external magnetics field, the microbots' moving direction could be changed easily. The speed of the 3D microbots can reach 450J.1m/s in hydrogen peroxide solution of 30% concentration. The chemical microbots prepared by 3D micro-printing technique pave a way for the future complex 3D microbots.
化学自行推进的3d打印微型机器人
化学微机器人的自推进能力和将周围连续的化学燃料转化为机械运动的能力,使其成为环境和生物医学工程中很有前途的自主装置。目前,化学推进原理和运动模型已经得到了很好的研究。为了实现更复杂的功能,人们越来越关注微型机器人复杂的3D设计。在这里,我们展示了一个具有有效驱动和可靠磁响应能力的三维化学催化微型机器人。采用三维微打印技术制备了直立结构,并在溅射沉积过程中覆盖了Ni和Pt层。涂层Pt层提供单向催化推进力。在外加磁场作用下,微机器人的运动方向容易改变。三维微型机器人的速度可达450J。1m/s,在30%浓度的双氧水溶液中。利用三维微打印技术制备的化学微机器人为未来复杂的三维微机器人铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信