Comparison of identity fusion algorithms using estimations of confusion matrices

G. Golino, A. Graziano, A. Farina, W. Mellano, F. Ciaramaglia
{"title":"Comparison of identity fusion algorithms using estimations of confusion matrices","authors":"G. Golino, A. Graziano, A. Farina, W. Mellano, F. Ciaramaglia","doi":"10.5281/ZENODO.22445","DOIUrl":null,"url":null,"abstract":"Scope of this paper is to investigate the performances of different identity declaration fusion algorithms in terms of probability of correct classification, supposing that the information for combination of the inferences from the different classifier is affected by measurement errors. In particular, these information have been assumed to be provided in the form of confusion matrices. Six identity fusion algorithms from literature with different complexity have been included in the comparison: heuristic methods such as voting and Borda Count, Bayes' and Dempster-Shafer's methods and the Proportional Redistribution Rule n° 1 in the Dempster-Shafer's framework.","PeriodicalId":136004,"journal":{"name":"17th International Conference on Information Fusion (FUSION)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.22445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scope of this paper is to investigate the performances of different identity declaration fusion algorithms in terms of probability of correct classification, supposing that the information for combination of the inferences from the different classifier is affected by measurement errors. In particular, these information have been assumed to be provided in the form of confusion matrices. Six identity fusion algorithms from literature with different complexity have been included in the comparison: heuristic methods such as voting and Borda Count, Bayes' and Dempster-Shafer's methods and the Proportional Redistribution Rule n° 1 in the Dempster-Shafer's framework.
使用混淆矩阵估计的身份融合算法的比较
本文的研究范围是在假设不同分类器的推断组合信息受测量误差影响的情况下,从正确分类概率的角度考察不同身份声明融合算法的性能。特别是,这些信息被假定以混淆矩阵的形式提供。比较中包含了来自不同复杂性文献的六种身份融合算法:启发式方法,如投票和Borda Count, Bayes和Dempster-Shafer的方法以及Dempster-Shafer框架中的比例再分配规则n°1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信