On global asymptotic stability criteria for cellular neural networks with discrete and distributed time-varying delays

Bin Huang, Minghui Jiang, Ting Zhang
{"title":"On global asymptotic stability criteria for cellular neural networks with discrete and distributed time-varying delays","authors":"Bin Huang, Minghui Jiang, Ting Zhang","doi":"10.1109/IWACI.2010.5585133","DOIUrl":null,"url":null,"abstract":"In this paper, the global asymptotic stability for a class of uncertain delayed cellular neural networks with discrete and distributed time-varying delays (DCNNs) is considered. Based on the Lyapunov functional stability analysis for differential equations and the linear matrix inequality (LMI) optimization approach, a new criterion is derived to guarantee global asymptotic stability. A numerical example is illustrated to show the effectiveness of our results.","PeriodicalId":189187,"journal":{"name":"Third International Workshop on Advanced Computational Intelligence","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Workshop on Advanced Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWACI.2010.5585133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the global asymptotic stability for a class of uncertain delayed cellular neural networks with discrete and distributed time-varying delays (DCNNs) is considered. Based on the Lyapunov functional stability analysis for differential equations and the linear matrix inequality (LMI) optimization approach, a new criterion is derived to guarantee global asymptotic stability. A numerical example is illustrated to show the effectiveness of our results.
具有离散和分布时变时滞的细胞神经网络的全局渐近稳定性准则
研究了一类具有离散和分布时变时滞的不确定延迟细胞神经网络的全局渐近稳定性问题。基于Lyapunov泛函稳定性分析和线性矩阵不等式(LMI)优化方法,导出了保证微分方程全局渐近稳定的新判据。最后通过一个数值算例说明了所得结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信