Rings in which the power of every element is the sum of an idempotent and a unit

Huanyin Chen, M. Sheibani
{"title":"Rings in which the power of every element is the sum of an idempotent and a unit","authors":"Huanyin Chen, M. Sheibani","doi":"10.2298/PIM1716133C","DOIUrl":null,"url":null,"abstract":"A ring R is uniquely π-clean if the power of every element can be uniquely written as the sum of an idempotent and a unit. We prove that a ring R is uniquely π-clean if and only if for any a ∈ R, there exists an integer m and a central idempotent e ∈ R such that am − e ∈ J(R), if and only if R is abelian; idempotents lift modulo J(R); and R/P is torsion for all prime ideals P ⊇ J(R). Finally, we completely determine when a uniquely π-clean ring has nil Jacobson radical.","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM1716133C","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A ring R is uniquely π-clean if the power of every element can be uniquely written as the sum of an idempotent and a unit. We prove that a ring R is uniquely π-clean if and only if for any a ∈ R, there exists an integer m and a central idempotent e ∈ R such that am − e ∈ J(R), if and only if R is abelian; idempotents lift modulo J(R); and R/P is torsion for all prime ideals P ⊇ J(R). Finally, we completely determine when a uniquely π-clean ring has nil Jacobson radical.
环中每个元素的幂是一个幂等元素和一个单位元素的和
一个环R是唯一π清洁的,如果每个元素的幂可以唯一地写成幂等与单位的和。证明环R是唯一π清洁的当且仅当对于任意a∈R,存在整数m和中心幂等e∈R,使得am - e∈J(R),当且仅当R是阿贝尔的;幂等升力模J(R);R/P是所有素数理想P的扭转率。最后,我们完全确定了一个唯一π-干净环什么时候没有Jacobson自由基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信