Target tracking using multiple auxiliary particle filtering

Luis Úbeda-Medina, Á. F. García-Fernández, J. Grajal
{"title":"Target tracking using multiple auxiliary particle filtering","authors":"Luis Úbeda-Medina, Á. F. García-Fernández, J. Grajal","doi":"10.23919/ICIF.2017.8009620","DOIUrl":null,"url":null,"abstract":"Particle filters are a widely used tool to perform Bayesian filtering under nonlinear dynamic and measurement models or non-Gaussian distributions. However, the performance of particle filters plummets when dealing with high-dimensional state spaces. In this paper, we propose a method that makes use of multiple particle filtering to circumvent this difficulty. Multiple particle filters partition the state space and run an individual particle filter for every component. Each particle filter shares information with the rest of the filters to account for the influence of the complete state in the observations collected by sensors. The method considered in this paper uses auxiliary filtering within the MPF framework, outperforming previous algorithms in the literature. The performance of the considered algorithm is tested in a multiple target tracking scenario, with fixed and known number of targets, using a sensor network with a nonlinear measurement model.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Particle filters are a widely used tool to perform Bayesian filtering under nonlinear dynamic and measurement models or non-Gaussian distributions. However, the performance of particle filters plummets when dealing with high-dimensional state spaces. In this paper, we propose a method that makes use of multiple particle filtering to circumvent this difficulty. Multiple particle filters partition the state space and run an individual particle filter for every component. Each particle filter shares information with the rest of the filters to account for the influence of the complete state in the observations collected by sensors. The method considered in this paper uses auxiliary filtering within the MPF framework, outperforming previous algorithms in the literature. The performance of the considered algorithm is tested in a multiple target tracking scenario, with fixed and known number of targets, using a sensor network with a nonlinear measurement model.
目标跟踪采用多个辅助粒子滤波
粒子滤波是在非线性动态和测量模型或非高斯分布下进行贝叶斯滤波的一种广泛使用的工具。然而,当处理高维状态空间时,粒子滤波器的性能直线下降。在本文中,我们提出了一种利用多粒子滤波来克服这一困难的方法。多个粒子过滤器划分状态空间,并为每个组件运行单独的粒子过滤器。每个粒子滤波器与其他滤波器共享信息,以解释传感器收集的观测中完整状态的影响。本文考虑的方法在MPF框架内使用辅助滤波,优于文献中先前的算法。在具有固定和已知目标数量的多目标跟踪场景下,利用非线性测量模型的传感器网络对所考虑算法的性能进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信