Sign language recognition using color means of gradient slope magnitude edge images

Sudeep D. Thepade, G. Kulkarni, A. Narkhede, P. Kelvekar, S. Tathe
{"title":"Sign language recognition using color means of gradient slope magnitude edge images","authors":"Sudeep D. Thepade, G. Kulkarni, A. Narkhede, P. Kelvekar, S. Tathe","doi":"10.1109/ISSP.2013.6526905","DOIUrl":null,"url":null,"abstract":"Sign Language is a method of communication for hearing and speech impaired people in which hand movements, gestures and facial expressions are used to convey messages. The hearing and speech impaired people are deeply associated with Sign Language as it is their fundamental medium of communication. American Sign Language (ASL) is a complete, visual-gestural language that employs signs made by moving the hands combined with facial expressions and postures of the body. The paper discusses novel Sign Language Image Retrieval techniques using the edge images of the ASL signs. Edge images are obtained by applying gradient masks and Slope Magnitude Methods. The proposed image retrieval techniques are tested on generic image database with 312 images. Feature vector of sign images are extracted using color averaging techniques. In all 5 techniques are experimented and sign images are compared using 5 masks (Prewitt, Robert, Sobel, Laplace, and Canny) and 5 averaging techniques. The GAR (Genuine Acceptance Ratio) values indicate the best performance values.","PeriodicalId":354719,"journal":{"name":"2013 International Conference on Intelligent Systems and Signal Processing (ISSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Intelligent Systems and Signal Processing (ISSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSP.2013.6526905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Sign Language is a method of communication for hearing and speech impaired people in which hand movements, gestures and facial expressions are used to convey messages. The hearing and speech impaired people are deeply associated with Sign Language as it is their fundamental medium of communication. American Sign Language (ASL) is a complete, visual-gestural language that employs signs made by moving the hands combined with facial expressions and postures of the body. The paper discusses novel Sign Language Image Retrieval techniques using the edge images of the ASL signs. Edge images are obtained by applying gradient masks and Slope Magnitude Methods. The proposed image retrieval techniques are tested on generic image database with 312 images. Feature vector of sign images are extracted using color averaging techniques. In all 5 techniques are experimented and sign images are compared using 5 masks (Prewitt, Robert, Sobel, Laplace, and Canny) and 5 averaging techniques. The GAR (Genuine Acceptance Ratio) values indicate the best performance values.
手语识别利用颜色梯度的方法对边缘图像进行坡度幅度识别
手语是为听力和语言障碍人士提供的一种交流方式,通过手部动作、手势和面部表情来传达信息。听力和语言障碍人士与手语有着深刻的联系,因为手语是他们的基本交流媒介。美国手语(ASL)是一种完整的视觉手势语言,通过移动双手,结合面部表情和身体姿势做出手势。本文讨论了一种新的基于手语边缘图像的手语图像检索技术。采用梯度掩模法和斜率幅度法获得边缘图像。在具有312幅图像的通用图像数据库上对所提出的图像检索技术进行了测试。利用颜色平均技术提取标志图像的特征向量。在所有5种技术中进行了实验,并使用5种掩模(Prewitt, Robert, Sobel, Laplace和Canny)和5种平均技术对符号图像进行了比较。GAR(真实接受率)值表示最佳性能值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信