Analysis of slant STEC methodologies

Ben Schilling, R. Calfas, A. Coster, T. Gaussiran, A. Komjathy
{"title":"Analysis of slant STEC methodologies","authors":"Ben Schilling, R. Calfas, A. Coster, T. Gaussiran, A. Komjathy","doi":"10.1109/USNC-URSI-NRSM.2014.6928066","DOIUrl":null,"url":null,"abstract":"The era of Global Navigation Satellite Systems (GNSS) and burgeoning worldwide receiver networks have increased the fidelity of ionospheric models and capacity of their applications. Precise slant total electron content (STEC) measurements are critical for a plethora of modern applications including precision navigation and geolocation, radio communication, surveillance, and weather modeling. The precision of STEC estimates from dual-frequency Global Positioning System (GPS) data is bounded by carrier phase noise, multipath effects, and systematic errors of estimating satellite and receiver biases (C. Brunini and F. Azpilicueta, Geodesy, 84:293-304). Through a collaborative effort, this presentation investigates precision of STEC estimates by analyzing disparities in STEC derived from International GNSS Service (IGS) GPS data among three independent processing chains: an open source algorithm developed at the Applied Research Laboratories at the University of Texas at Austin (ARL:UT) and algorithms developed at the Jet Propulsion Laboratory (JPL) and Haystack Observatory at the Massachusetts Institute of Technology (MIT). A common data set consisting of RINEX files from nearly 150 IGS stations in early March 2012 was processed by all three algorithms. After removing satellite and receiver biases from the STEC estimates, three ΔSTEC comparisons were analyzed over a period of quiescent ionospheric conditions on March 4th, 2012 and a period following a coronal mass ejection on March 7th, 2012. The debiased ΔSTEC values represent the inherent processing noise due to the Kalman filtering technique of obtaining STEC from dual-frequency GPS observations. Results of the ΔSTEC distributions and impact of the processing error will be presented.","PeriodicalId":277196,"journal":{"name":"2014 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/USNC-URSI-NRSM.2014.6928066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The era of Global Navigation Satellite Systems (GNSS) and burgeoning worldwide receiver networks have increased the fidelity of ionospheric models and capacity of their applications. Precise slant total electron content (STEC) measurements are critical for a plethora of modern applications including precision navigation and geolocation, radio communication, surveillance, and weather modeling. The precision of STEC estimates from dual-frequency Global Positioning System (GPS) data is bounded by carrier phase noise, multipath effects, and systematic errors of estimating satellite and receiver biases (C. Brunini and F. Azpilicueta, Geodesy, 84:293-304). Through a collaborative effort, this presentation investigates precision of STEC estimates by analyzing disparities in STEC derived from International GNSS Service (IGS) GPS data among three independent processing chains: an open source algorithm developed at the Applied Research Laboratories at the University of Texas at Austin (ARL:UT) and algorithms developed at the Jet Propulsion Laboratory (JPL) and Haystack Observatory at the Massachusetts Institute of Technology (MIT). A common data set consisting of RINEX files from nearly 150 IGS stations in early March 2012 was processed by all three algorithms. After removing satellite and receiver biases from the STEC estimates, three ΔSTEC comparisons were analyzed over a period of quiescent ionospheric conditions on March 4th, 2012 and a period following a coronal mass ejection on March 7th, 2012. The debiased ΔSTEC values represent the inherent processing noise due to the Kalman filtering technique of obtaining STEC from dual-frequency GPS observations. Results of the ΔSTEC distributions and impact of the processing error will be presented.
倾斜STEC方法分析
全球导航卫星系统(GNSS)的时代和迅速发展的全球接收机网络提高了电离层模型的保真度及其应用能力。精确的倾斜总电子含量(STEC)测量对于包括精确导航和地理定位,无线电通信,监视和天气建模在内的众多现代应用至关重要。从双频全球定位系统(GPS)数据估计STEC的精度受到载波相位噪声、多径效应和估计卫星和接收机偏差的系统误差的限制(C. Brunini和F. Azpilicueta, Geodesy, 84:293-304)。通过合作努力,本报告通过分析三个独立处理链中来自国际GNSS服务(IGS) GPS数据的STEC差异来研究STEC估计的精度:德克萨斯大学奥斯汀分校应用研究实验室(ARL:UT)开发的开源算法和麻省理工学院(MIT)喷气推进实验室(JPL)和干草堆天文台开发的算法。2012年3月初,由近150个IGS站点的RINEX文件组成的通用数据集由所有三种算法处理。在从STEC估计中去除卫星和接收器的偏差后,对2012年3月4日静止电离层条件时期和2012年3月7日日冕物质抛射之后的时期进行了三次ΔSTEC比较分析。去偏ΔSTEC值表示从双频GPS观测数据中获得STEC的卡尔曼滤波技术所产生的固有处理噪声。将给出ΔSTEC分布的结果和处理误差的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信