Automated parameter selection of scheduling algorithms using machine learning techniques

P. Alefragis, Charalampos Sofos
{"title":"Automated parameter selection of scheduling algorithms using machine learning techniques","authors":"P. Alefragis, Charalampos Sofos","doi":"10.1145/3139367.3139442","DOIUrl":null,"url":null,"abstract":"The work describes the effort to automatically select scheduling algorithms and generate corresponding parameters for new problem instances based on the results obtained for similar problem instances that have been extensively investigated. The effort tries to vastly reduce the development cycle of optimization algorithms as parameter tuning is usually more time consuming that implementing the algorithm or model. We investigated various heuristic methods for hyper-parameter selection and evaluated different machine learning methods. The results are very promising as selecting the top 5% combination of algorithms and parameters manages to consistently achieve results that are in the top 10% of the generated solutions, if full parameter and algorithm execution is performed.","PeriodicalId":436862,"journal":{"name":"Proceedings of the 21st Pan-Hellenic Conference on Informatics","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st Pan-Hellenic Conference on Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139367.3139442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The work describes the effort to automatically select scheduling algorithms and generate corresponding parameters for new problem instances based on the results obtained for similar problem instances that have been extensively investigated. The effort tries to vastly reduce the development cycle of optimization algorithms as parameter tuning is usually more time consuming that implementing the algorithm or model. We investigated various heuristic methods for hyper-parameter selection and evaluated different machine learning methods. The results are very promising as selecting the top 5% combination of algorithms and parameters manages to consistently achieve results that are in the top 10% of the generated solutions, if full parameter and algorithm execution is performed.
使用机器学习技术的调度算法的自动参数选择
该工作描述了基于广泛研究的类似问题实例所获得的结果,为新问题实例自动选择调度算法并生成相应参数的努力。由于参数调优通常比实现算法或模型更耗时,因此该工作试图大大缩短优化算法的开发周期。我们研究了超参数选择的各种启发式方法,并评估了不同的机器学习方法。如果执行完整的参数和算法,则选择前5%的算法和参数组合可以始终如一地获得生成解决方案中前10%的结果,因此结果非常有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信