Universal first-order logic is superfluous in the second level of the polynomial-time hierarchy

Log. J. IGPL Pub Date : 2019-11-25 DOI:10.1093/JIGPAL/JZZ009
N. Borges, Edwin Pin
{"title":"Universal first-order logic is superfluous in the second level of the polynomial-time hierarchy","authors":"N. Borges, Edwin Pin","doi":"10.1093/JIGPAL/JZZ009","DOIUrl":null,"url":null,"abstract":"\n In this paper we prove that $\\forall \\textrm{FO}$, the universal fragment of first-order logic, is superfluous in $\\varSigma _2^p$ and $\\varPi _2^p$. As an example, we show that this yields a syntactic proof of the $\\varSigma _2^p$-completeness of value-cost satisfiability. The superfluity method is interesting since it gives a way to prove completeness of problems involving numerical data such as lengths, weights and costs and it also adds to the programme started by Immerman and Medina about the syntactic approach in the study of completeness.","PeriodicalId":304915,"journal":{"name":"Log. J. IGPL","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. J. IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/JIGPAL/JZZ009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we prove that $\forall \textrm{FO}$, the universal fragment of first-order logic, is superfluous in $\varSigma _2^p$ and $\varPi _2^p$. As an example, we show that this yields a syntactic proof of the $\varSigma _2^p$-completeness of value-cost satisfiability. The superfluity method is interesting since it gives a way to prove completeness of problems involving numerical data such as lengths, weights and costs and it also adds to the programme started by Immerman and Medina about the syntactic approach in the study of completeness.
普遍一阶逻辑在多项式时间层次的第二层是多余的
本文证明了一阶逻辑的泛片段$\forall \textrm{FO}$在$\varSigma _2^p$和$\varPi _2^p$中是多余的。作为一个例子,我们证明了这产生了价值-成本可满足性的$\varSigma _2^p$-完备性的语法证明。多余性方法很有趣,因为它提供了一种方法来证明涉及数值数据(如长度、权重和成本)的问题的完备性,它还为Immerman和Medina开始的关于完备性研究的句法方法的计划增加了新的内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信