A Method for Estimating the Parameters of Spaceborne Synthetic Aperture Radar LFM under a Low Signal-to-Noise Ratio

Shihong Chen, Minghai Pan, Xudong Wang
{"title":"A Method for Estimating the Parameters of Spaceborne Synthetic Aperture Radar LFM under a Low Signal-to-Noise Ratio","authors":"Shihong Chen, Minghai Pan, Xudong Wang","doi":"10.1109/IMCEC51613.2021.9482030","DOIUrl":null,"url":null,"abstract":"Due to the complex and harsh electromagnetic environment, the accuracy of the parameter estimation of intercepted low signal-to-noise ratio (SNR) spaceborne synthetic aperture radar (SAR) radiation source linear frequency modulation (LFM) signals is not high; this paper proposes a method for joint parameter estimation of multiple received pulses submerged in Gaussian white noise. This method makes use of the coherence between multiple pulses of the received signal and cooperates with the short-time Fourier transform (STFT) and the robust ordinary least squares (ROLS) to effectively estimate the LFM signal parameters. Finally, the performance of the algorithm is verified by the simulation analysis method. Under the condition of a low SNR (-20 dB), the normalized root mean square error (NRMSE) of the starting frequency can reach 10-3; the NRMSE of the chirp rates of the intrapulse modulation characteristic parameter can reach 2 ×10-3. The comparison with other methods further proves the performance advantage of this method under a low SNR.","PeriodicalId":240400,"journal":{"name":"2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCEC51613.2021.9482030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Due to the complex and harsh electromagnetic environment, the accuracy of the parameter estimation of intercepted low signal-to-noise ratio (SNR) spaceborne synthetic aperture radar (SAR) radiation source linear frequency modulation (LFM) signals is not high; this paper proposes a method for joint parameter estimation of multiple received pulses submerged in Gaussian white noise. This method makes use of the coherence between multiple pulses of the received signal and cooperates with the short-time Fourier transform (STFT) and the robust ordinary least squares (ROLS) to effectively estimate the LFM signal parameters. Finally, the performance of the algorithm is verified by the simulation analysis method. Under the condition of a low SNR (-20 dB), the normalized root mean square error (NRMSE) of the starting frequency can reach 10-3; the NRMSE of the chirp rates of the intrapulse modulation characteristic parameter can reach 2 ×10-3. The comparison with other methods further proves the performance advantage of this method under a low SNR.
低信噪比下星载合成孔径雷达LFM参数估计方法
由于电磁环境复杂恶劣,星载合成孔径雷达(SAR)低信噪比辐射源线性调频(LFM)信号截获参数估计精度不高;提出了一种淹没在高斯白噪声中的多个接收脉冲的联合参数估计方法。该方法利用接收信号中多个脉冲之间的相干性,结合短时傅里叶变换(STFT)和鲁棒普通最小二乘(ROLS)对LFM信号参数进行有效估计。最后,通过仿真分析方法验证了算法的性能。在低信噪比(-20 dB)条件下,启动频率的归一化均方根误差(NRMSE)可达10-3;脉内调制特性参数啁啾率的NRMSE可达2 ×10-3。与其他方法的比较进一步证明了该方法在低信噪比下的性能优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信