{"title":"Aircraft on-board SAR processing using a frequency-domain fast correlation technique","authors":"K. Liu","doi":"10.1109/NRC.1988.10951","DOIUrl":null,"url":null,"abstract":"The design of a frequency-domain fast correlation processor for aircraft onboard synthetic-aperture radar (SAR) applications is described. The design uses the fast Fourier transform (FFT) fast correlation technique to perform both range and azimuth pulse compression functions for the NASA/JPL L-band, quadpolarization airborne SAR. The subject processor is computationally efficient and requires a simple control unit. It is capable of producing single-look, 8-m (slant range) by 10-m (azimuth) resolution, SAR images of a selected polarization over a swath width of up to 15 km in real time onboard the aircraft.<<ETX>>","PeriodicalId":237192,"journal":{"name":"Proceedings of the 1988 IEEE National Radar Conference","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1988 IEEE National Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.1988.10951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The design of a frequency-domain fast correlation processor for aircraft onboard synthetic-aperture radar (SAR) applications is described. The design uses the fast Fourier transform (FFT) fast correlation technique to perform both range and azimuth pulse compression functions for the NASA/JPL L-band, quadpolarization airborne SAR. The subject processor is computationally efficient and requires a simple control unit. It is capable of producing single-look, 8-m (slant range) by 10-m (azimuth) resolution, SAR images of a selected polarization over a swath width of up to 15 km in real time onboard the aircraft.<>