Design of a neural network based power system stabilizer in reduced order power system

M. Masrob, M. Rahman, G. George
{"title":"Design of a neural network based power system stabilizer in reduced order power system","authors":"M. Masrob, M. Rahman, G. George","doi":"10.1109/CCECE.2017.7946634","DOIUrl":null,"url":null,"abstract":"In this paper, a simple artificial neural network power system stabilizer (SANN-PSS) is implemented using a reduced order power system. Knowledge of the high bus voltage of a transformer is employed to alter the Heffron-Phillips' method. Furthermore, a reduction technique is applied to change the power system's sequence, and increase the power system's stability by adjusting the controller's parameters in real time in response to modifications in the operating conditions. The simulation results confirm and enhance the power system's stability with the suggested SANN-PSS at altered operating conditions.","PeriodicalId":238720,"journal":{"name":"2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2017.7946634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, a simple artificial neural network power system stabilizer (SANN-PSS) is implemented using a reduced order power system. Knowledge of the high bus voltage of a transformer is employed to alter the Heffron-Phillips' method. Furthermore, a reduction technique is applied to change the power system's sequence, and increase the power system's stability by adjusting the controller's parameters in real time in response to modifications in the operating conditions. The simulation results confirm and enhance the power system's stability with the suggested SANN-PSS at altered operating conditions.
基于神经网络的降阶电力系统稳定器设计
本文采用降阶电力系统实现了一种简单的人工神经网络电力系统稳定器(san - pss)。变压器的高母线电压的知识被用来改变Heffron-Phillips的方法。在此基础上,采用降约技术改变电力系统的顺序,并根据运行条件的变化实时调整控制器参数,提高电力系统的稳定性。仿真结果证实并提高了所提出的san - pss在变工况下电力系统的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信