Hilbert's Nullstellensatz

Alexander Maletzky
{"title":"Hilbert's Nullstellensatz","authors":"Alexander Maletzky","doi":"10.1017/9781316683002.039","DOIUrl":null,"url":null,"abstract":"Let k be an algebraically closed field. We will employ the following notation. If I ⊂ k[X1, . . . , Xn] is an ideal, we let Z(I) denote the affine algebraic set in An defined by the vanishing of the polynomials in I . Conversely, if X is an affine algebraic set, I(X) denotes the ideal of polynomials in k[X1, . . . , Xn] vanishing on X . We will give a proof of the following result, called the weak Nullstellensatz:","PeriodicalId":280633,"journal":{"name":"Arch. Formal Proofs","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arch. Formal Proofs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781316683002.039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Let k be an algebraically closed field. We will employ the following notation. If I ⊂ k[X1, . . . , Xn] is an ideal, we let Z(I) denote the affine algebraic set in An defined by the vanishing of the polynomials in I . Conversely, if X is an affine algebraic set, I(X) denotes the ideal of polynomials in k[X1, . . . , Xn] vanishing on X . We will give a proof of the following result, called the weak Nullstellensatz:
Hilbert Nullstellensatz吗
设k是一个代数闭域。我们将使用以下符号。如果I∧k[X1,…], Xn]是一个理想,我们设Z(I)表示an中的仿射代数集,该仿射代数集由I中的多项式消失所定义。相反,如果X是仿射代数集,则I(X)表示k[X1,…]中多项式的理想。, Xn]在X上消失。我们将给出以下结果的证明,称为弱Nullstellensatz:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信