{"title":"A TinyML-Approach to Detect the Proximity of People Based on Bluetooth Low Energy Beacons","authors":"M. Girolami, Francesco Fattori, S. Chessa","doi":"10.1109/IE57519.2023.10179090","DOIUrl":null,"url":null,"abstract":"Proximity detection is the process of estimating the closeness between a target and a point of interest, and it can be estimated with different technologies and techniques. In this paper we focus on how detecting proximity between people with a TinyML-based approach. We analyze RSS values (Received Signal Strength) estimated by a micro-controller and propagated by Bluetooth’s tags. To this purpose, we collect a dataset of Bluetooth RSS signals by considering different postures of the involved people. The dataset is adopted to train and test two neural networks: a fully-connected and an LSTM model that we compress to be executed directly on-board of the micro-controller. Experimental results conducted over the dataset show an average precision and recall metrics of 0.8 with both of the models, and with an inference time less than 1 ms.","PeriodicalId":439212,"journal":{"name":"2023 19th International Conference on Intelligent Environments (IE)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 19th International Conference on Intelligent Environments (IE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IE57519.2023.10179090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Proximity detection is the process of estimating the closeness between a target and a point of interest, and it can be estimated with different technologies and techniques. In this paper we focus on how detecting proximity between people with a TinyML-based approach. We analyze RSS values (Received Signal Strength) estimated by a micro-controller and propagated by Bluetooth’s tags. To this purpose, we collect a dataset of Bluetooth RSS signals by considering different postures of the involved people. The dataset is adopted to train and test two neural networks: a fully-connected and an LSTM model that we compress to be executed directly on-board of the micro-controller. Experimental results conducted over the dataset show an average precision and recall metrics of 0.8 with both of the models, and with an inference time less than 1 ms.