Evolution of privacy-preserving data publishing

Y. Yuan, Jing Yang, Jianpei Zhang, S. Lan, Junwei Zhang
{"title":"Evolution of privacy-preserving data publishing","authors":"Y. Yuan, Jing Yang, Jianpei Zhang, S. Lan, Junwei Zhang","doi":"10.1109/ASID.2011.5967410","DOIUrl":null,"url":null,"abstract":"To achieve privacy protection better in data publishing, data must be sanitized before release. Research on protecting individual privacy and data confidentiality has received contributions from many fields. In order to grasp the development of privacy preserving data publishing, we discussed the evolution of this theme, focused on privacy mechanism, data utility and its metrics. The privacy mechanism, such as k-anonymity, l-diversity and t-closeness, provides formal safety guarantees and data utility preserve useful information while publishing data. Meantime, we discussed social network privacy and location based service. Finally, we made a conclusion with respect to privacy preserving data publishing, and given further research directions.","PeriodicalId":328792,"journal":{"name":"2011 IEEE International Conference on Anti-Counterfeiting, Security and Identification","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Anti-Counterfeiting, Security and Identification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASID.2011.5967410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

To achieve privacy protection better in data publishing, data must be sanitized before release. Research on protecting individual privacy and data confidentiality has received contributions from many fields. In order to grasp the development of privacy preserving data publishing, we discussed the evolution of this theme, focused on privacy mechanism, data utility and its metrics. The privacy mechanism, such as k-anonymity, l-diversity and t-closeness, provides formal safety guarantees and data utility preserve useful information while publishing data. Meantime, we discussed social network privacy and location based service. Finally, we made a conclusion with respect to privacy preserving data publishing, and given further research directions.
隐私保护数据发布的演变
为了在数据发布中更好地保护隐私,必须在发布之前对数据进行消毒。保护个人隐私和数据保密的研究得到了许多领域的贡献。为了把握保护隐私的数据发布的发展,我们讨论了这一主题的演变,重点讨论了隐私机制、数据效用及其度量。隐私机制,如k-匿名性、l-多样性和t-封闭性,提供了正式的安全保证,数据实用程序在发布数据时保留了有用的信息。同时,我们讨论了社交网络隐私和基于位置的服务。最后,对隐私保护数据发布进行了总结,并给出了进一步的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信