{"title":"EFDet-SPP: efficient anchor-free network for fine vehicle detection","authors":"Yongsheng Xie, Ming Ye, Zhe Zhang, He Liu","doi":"10.1117/12.2667701","DOIUrl":null,"url":null,"abstract":"Existing vehicle detection methods lack the fine vehicle detection algorithm. In order to improve the accuracy and applicability of anchor-based object detection models, a novel and practical vehicle Fine-grained identification network (EFDet-SPP) based on the EfficientDet is proposed. The improved network adds a Spatial Pyramid Pooling module (SPP) after the feature extraction network for concatenating features to enhance network learning capabilities, and multi-scale extraction of highly semantic features of images. Anchor-based predictions are converted to pixel-based predictions by combining FCOS's head network, eliminating the hyperparameters associated with anchor boxes. And with Mosaic, Copy-Paste data augmentation methods scale small object samples to achieve data sample balance. Experimental results show that the improved network has achieved 94.8% in the actual collected fine vehicle detection dataset, which is greatly improved compared with the EfficientDet network, and does not significantly increase the training parameters and calculation amount of the network.","PeriodicalId":345723,"journal":{"name":"Fifth International Conference on Computer Information Science and Artificial Intelligence","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Computer Information Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2667701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Existing vehicle detection methods lack the fine vehicle detection algorithm. In order to improve the accuracy and applicability of anchor-based object detection models, a novel and practical vehicle Fine-grained identification network (EFDet-SPP) based on the EfficientDet is proposed. The improved network adds a Spatial Pyramid Pooling module (SPP) after the feature extraction network for concatenating features to enhance network learning capabilities, and multi-scale extraction of highly semantic features of images. Anchor-based predictions are converted to pixel-based predictions by combining FCOS's head network, eliminating the hyperparameters associated with anchor boxes. And with Mosaic, Copy-Paste data augmentation methods scale small object samples to achieve data sample balance. Experimental results show that the improved network has achieved 94.8% in the actual collected fine vehicle detection dataset, which is greatly improved compared with the EfficientDet network, and does not significantly increase the training parameters and calculation amount of the network.