PCA-Based Image Registration : Application to On-Line MR Temperature Monitoring of Moving Tissues

G. Maclair, B. D. Senneville, M. Ries, B. Quesson, P. Desbarats, J. Benois-Pineau, C. Moonen
{"title":"PCA-Based Image Registration : Application to On-Line MR Temperature Monitoring of Moving Tissues","authors":"G. Maclair, B. D. Senneville, M. Ries, B. Quesson, P. Desbarats, J. Benois-Pineau, C. Moonen","doi":"10.1109/ICIP.2007.4379266","DOIUrl":null,"url":null,"abstract":"Real-time magnetic resonance (MR) thermometry provides continuous temperature mapping inside the human body and is therefore a promising tool to monitor and control interventional therapies based on thermal ablation. Temperature information must be mapped to a reference position of observed organs in order to allow thermal dose computation, as the history of temperature is required for each pixel. Motion compensated MR-thermometry for thermotherapy has to cope with radio-frequency (RF) artifacts and relaxation-time changes of the monitored tissue. While purely optical-flow-based realignment may lead to temperature map computation errors for the case of local or global intensity changes, principal component analysis based realignment results in accurately registered temperature maps. The motion estimation process described in this paper consists of two steps : a parameterized flow models is initially computed using a principal component analysis during a preparative learning step; during the intervention, motion is characterized with a small set of parameters using a least square solver.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Real-time magnetic resonance (MR) thermometry provides continuous temperature mapping inside the human body and is therefore a promising tool to monitor and control interventional therapies based on thermal ablation. Temperature information must be mapped to a reference position of observed organs in order to allow thermal dose computation, as the history of temperature is required for each pixel. Motion compensated MR-thermometry for thermotherapy has to cope with radio-frequency (RF) artifacts and relaxation-time changes of the monitored tissue. While purely optical-flow-based realignment may lead to temperature map computation errors for the case of local or global intensity changes, principal component analysis based realignment results in accurately registered temperature maps. The motion estimation process described in this paper consists of two steps : a parameterized flow models is initially computed using a principal component analysis during a preparative learning step; during the intervention, motion is characterized with a small set of parameters using a least square solver.
基于pca的图像配准在运动组织核磁共振温度在线监测中的应用
实时磁共振(MR)测温仪提供了人体内连续的温度测绘,因此是一种很有前途的工具,用于监测和控制基于热消融的介入治疗。温度信息必须映射到被观察器官的参考位置,以便进行热剂量计算,因为每个像素都需要温度历史。用于热疗的运动补偿核磁共振测温必须应对射频(RF)伪影和被监测组织的松弛时间变化。在局部或全局强度变化的情况下,单纯基于光流的重调可能导致温度图计算误差,而基于主成分分析的重调可以得到准确的温度图。本文描述的运动估计过程包括两个步骤:在准备学习步骤中,首先使用主成分分析计算参数化的流模型;在干预过程中,使用最小二乘求解器用一组较小的参数来表征运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信