A Novel Approach Based on Spatio-temporal Features and Random Forest for Scar Detection Using Cine Cardiac Magnetic Resonance Images

S. Moccia, A. Cagnoli, C. Martini, Giuseppe Moscogiuri, M. Pepi, E. Frontoni, G. Pontone, E. Caiani
{"title":"A Novel Approach Based on Spatio-temporal Features and Random Forest for Scar Detection Using Cine Cardiac Magnetic Resonance Images","authors":"S. Moccia, A. Cagnoli, C. Martini, Giuseppe Moscogiuri, M. Pepi, E. Frontoni, G. Pontone, E. Caiani","doi":"10.22489/CinC.2020.050","DOIUrl":null,"url":null,"abstract":"Aim. To identify the presence of scar tissue in the left ventricle from Gadolinium (Gd)-free magnetic resonance cine sequences using a learning-based approach relying on spatiotemporal features. Methods. The spatial and temporal features were extracted using local binary patterns from (i) cine end-diastolic frame and (ii) two parametric images of amplitude and phase wall motion, respectively, and classified with Random Forest. Results. When tested on 328 cine sequences from 40 patients, a recall of 70% was achieved, improving significantly the classification resulting from spatial and temporal features processed separately. Conclusions. The proposed approach showed promising results, paving the way for scar identification from Gd-free images.","PeriodicalId":407282,"journal":{"name":"2020 Computing in Cardiology","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Computing in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2020.050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Aim. To identify the presence of scar tissue in the left ventricle from Gadolinium (Gd)-free magnetic resonance cine sequences using a learning-based approach relying on spatiotemporal features. Methods. The spatial and temporal features were extracted using local binary patterns from (i) cine end-diastolic frame and (ii) two parametric images of amplitude and phase wall motion, respectively, and classified with Random Forest. Results. When tested on 328 cine sequences from 40 patients, a recall of 70% was achieved, improving significantly the classification resulting from spatial and temporal features processed separately. Conclusions. The proposed approach showed promising results, paving the way for scar identification from Gd-free images.
基于时空特征和随机森林的心脏磁共振图像疤痕检测新方法
的目标。利用基于时空特征的学习方法,从无钆(Gd)磁共振电影序列中识别左心室瘢痕组织的存在。方法。利用局部二值模式分别从(i)舒张末期图像和(ii)振幅和相位壁面运动两幅参数图像中提取空间和时间特征,并用随机森林进行分类。结果。在对来自40名患者的328个电影序列进行测试时,召回率达到70%,显著改善了空间和时间特征分开处理的分类。结论。该方法显示了良好的结果,为从无gd图像中识别疤痕铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信