Optimizing Networked Rural Electrification Design using Adaptive Multiplier-Accelerated A* Algorithm

Jerry Chun-Fung Li, D. Zimmerle, P. Young
{"title":"Optimizing Networked Rural Electrification Design using Adaptive Multiplier-Accelerated A* Algorithm","authors":"Jerry Chun-Fung Li, D. Zimmerle, P. Young","doi":"10.1109/AI4G50087.2020.9311085","DOIUrl":null,"url":null,"abstract":"Networked rural electrification can potentially improve energy resources utilization, reduce cost and enhance supply reliability. Identifying optimal connection paths is critical for proper network design. To overcome the inefficiency of applying standard A* path-finding method to complex topography, multiplier-accelerated A* (MAA*) algorithm, which utilizes a modified heuristic, has been developed in previous research. While MAA* can generally reduce computation time by ~90% at the cost of ~10% optimality, the computation burden can still be remarkable for some areas with intricate topological variations. This paper proposes an adaptive version of MAA*. By introducing intermediate nodes in MAA*, the new algorithm significantly simplifies computations in complex regions. This greatly facilitates the analysis and design of optimal network for cost-effective electricity supply to users in remote, difficult-to-reach areas.","PeriodicalId":286271,"journal":{"name":"2020 IEEE / ITU International Conference on Artificial Intelligence for Good (AI4G)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE / ITU International Conference on Artificial Intelligence for Good (AI4G)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AI4G50087.2020.9311085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Networked rural electrification can potentially improve energy resources utilization, reduce cost and enhance supply reliability. Identifying optimal connection paths is critical for proper network design. To overcome the inefficiency of applying standard A* path-finding method to complex topography, multiplier-accelerated A* (MAA*) algorithm, which utilizes a modified heuristic, has been developed in previous research. While MAA* can generally reduce computation time by ~90% at the cost of ~10% optimality, the computation burden can still be remarkable for some areas with intricate topological variations. This paper proposes an adaptive version of MAA*. By introducing intermediate nodes in MAA*, the new algorithm significantly simplifies computations in complex regions. This greatly facilitates the analysis and design of optimal network for cost-effective electricity supply to users in remote, difficult-to-reach areas.
基于自适应乘数加速A*算法的网络化农村电气化优化设计
网络化农村电气化可以潜在地提高能源资源利用率,降低成本并提高供应可靠性。确定最佳连接路径对于正确的网络设计至关重要。为了克服标准A*寻路方法在复杂地形上的低效率,前人提出了一种基于改进启发式的乘子加速A* (MAA*)算法。虽然MAA*通常可以以~10%的最优性为代价减少~90%的计算时间,但对于一些具有复杂拓扑变化的区域,计算负担仍然是显着的。本文提出了MAA*的自适应版本。新算法通过在MAA*中引入中间节点,大大简化了复杂区域的计算。这极大地方便了分析和设计最优电网,为偏远、交通不便地区的用户提供经济高效的电力供应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信